UNIVERSITI TEKNOLOGI MARA CAWANGAN PULAU PINANG

INVESTIGATION OF PMOS CAPACITOR PERFORMANCE BY VARYING SEMICONDUCTOR MATERIALS USING SILVACO TCAD TOOLS

MOHAMMAD FAIZ BIN ISMAIL

BACHELOR OF ENGINEERING (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

July 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohammad Faiz bin Ismail
Student I.D. No.	:	2016263768
Programme	:	Bachelor of Engineering (Hons.) Electrical and
		Electronic Engineering
Faculty	:	Electrical Engineering
Thesis	:	Investigation Of pMOS Capacitor Performance by
		Varying Semiconductor Materials Using Silvaco
		TCAD Tools
		A
Signature of Student	:	
Date	:	July 2020

ABSTRACT

Metal oxide semiconductor (MOS) capacitor is a trilayer device that comprises of metal, dielectric and semiconductor layer. The advancement of MOS technology has greatly give huge improvement to MOS devices which lead to scaling down the MOS devices. The reduction of dielectric thickness has coming to an end so an alternative of using material with high mobility carrier as semiconductor base material is investigated. The objective of this work is to study the performance of p-type MOS (pMOS) capacitor by varying the base material for semiconductor to silicon (Si), germanium (Ge) and silicon germanium (SiGe). The performance of the pMOS was evaluated based on the capacitance-voltage (C-V) and current-voltage (I-V) characteristics. The simulation was done through Silvaco TCAD tool which comprising of ATHENA and ATLAS simulator ease the method of investigation. Result for C-V characteristics showed that pMOS capacitor fabricated using Ge and $S_{i3}N_4$ as base material and dielectric layer, respectively has voltage threshold, $V_T = 4.15V$ and $C_{max} = 2.61 \times 10^{-14} F$. pMOS capacitor fabricated using SiGe as base material and $S_{i3}N_4$ as dielectric layer has voltage threshold, $V_T = 4.28V$ and $C_{max} = 1.30 \times 10^{-14}F$. The performance of both pMOS capacitor are better compared to Si with $V_T = 4.38V$ and $C_{max} = 6.75 \times 10^{-15}F$. Based on the obtained results, Ge is chosen as the best material to be used as the semiconductor layer supported by recent researchers. As compared to SiGe, the C_{max} value of Ge is higher that enable the device to store more charge with low voltage to operate the MOS device.

ACKNOWLEDGEMENT

Firstly, I wish to thank Allah for giving me the opportunity to embark on my degree and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr Lyly Nyl binti Ismail.

My appreciation goes to individuals, organisation and all my friends who contributed directly or indirectly to the completion of the project by providing their thoughts and moral support.

Finally, this thesis is dedicated to the loving of my very dear father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah.

TABLE OF CONTENTS

AUT	THOR'S	DECLARATION	i	
ABS	TRACT		ii	
ACK	KNOWL	EDGEMENT	iii	
TAB	SLE OF	CONTENTS	iv	
LIST	Г ОГ ТА	BLES	vi	
LIST	r of fi	GURES	vii	
LIST	Г OF AP	PPENDICES	ix	
LIST	Г OF SY	MBOLS	X	
LIST	Г OF AB	BREVIATIONS	xi	
CHA	PTER 1	I INTRODUCTION	1	
1.1	Resea	rch Background	1	
1.2	Proble	2		
1.3	Objec	tives	2	
1.4	Scope	of Work	3	
1.5	Thesis	3		
CHA	PTER 2	2 LITERATURE REVIEW	5	
2 1	Devel	Development in Semiconductor Electronic		
	2.1.1	The Early Years: Bell Labs	6	
	2.1.2	Into Silicon	6	
	2.1.3	The Transistor	7	
	2.1.4	The Growth and Spread of Transistor Technology	7	
	2.1.5	Integrated Circuit	8	
2.2	MOS	MOS Capacitor		
	2.2.1	Structure	9	
	2.2.2	Operation	10	
	2.2.3	Energy-band Diagrams	12	
	2.2.4	Capacitance-Voltage (C-V) Characteristics	14	

	2.2.5	Charges in Dielectric	17
	2.2.6	Work Function Differences	20
	2.2.7	Flat-band Voltage	22
	2.2.8	Threshold voltage	23
2.3	Previo	us works	25
	2.3.1	Dielectric Layer	25
	2.3.2	Germanium as Semiconductor Layer	26
2.4	Summ	ary	27
CHAI	PTER 3	METHODOLOGY	28
3.1	Overvi	iew	28
3.2	Overal	l Flowchart of MOS Capacitor Fabrication	28
3.3	MOS (Capacitor Structure	29
3.4	Fabrica	ation in Athena	31
3.5	Capaci	itance-Voltage (C-V) Characteristics	35
3.6	Curren	t-Voltage (I-V) Characteristics	37
3.7	Summ	38	
CHAI	39		
4.1	Overvi	iew	39
4.2	MOS (Capacitor Structure	39
4.3	Capaci	itance-Voltage Characteristic	41
4.4	Curren	t-Voltage Characteristic	43
4.5	Summ	ary	46
CHAI	PTER 5	CONCLUSION AND FUTURE WORK	47
5.1	Conclu	ision	47
5.2	Future	Works	47
REFERENCES			48
APPENDICES			51

v