UNIVERSITI TEKNOLOGI MARA

ANTIMICROBIAL AND ANTIOXIDATIVE EFFECTS OF *PIPER BETLE* LEAVES EXTRACT ON NEUTROPHIL SURVIVAL AND katA EXPRESSION IN *STAPHYLOCOCCUS AUREUS*

NOR ANIS NADHIRAH BT MD NASIR

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Health Science

September 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institutions or non-academic institution for any other degree or qualification.

I, hereby acknowledge that I have been applied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nor Anis Nadhirah bt Md Nasir
Student's I.D. No.	:	2009607226
Programme	:	Master of Science
Faculty	:	Health Science, UiTM, Puncak Alam Campus
Thesis Title	:	Antimicrobial And Antioxidative Effects of Piper betle
		Leaves Extract on Neutrophil Survival and katA
		Expression in Staphylococcus aureus

		40.
Signature of Student	:	
Date	:	September 2012

ABSTRACT

P. hetle leaves are known to have antimicrobial and antioxidant activities widely used as traditional medicine in Asian countries. This study investigated the antimicrobial activities of ethanolic and aqueous extract of P. betle against S. aureus (ATCC 25923) by determining the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and its effects on the katA expression in S.aureus. The antioxidative activities were tested against H₂O₂ and oxidative burst in neutrophil. Hydrogen peroxide sensitivity test was performed to determine antioxidant of the ethanolic extract against H2O2. Catalase expression of S.aureus was analyzed by the SDS-PAGE, NATIVE-PAGE analysis and further confirmed using ferric chloride and potassium ferricyanide. Its effect on oxidative burst was determined using chemiluminescence assay. Ethanolic extract of P. betle leaves showed significant higher antimicrobial activity compared to the aqueous extract where p<0.05. MICs values of ethanolic and aqueous extracts were 5mg/ml and 10mg/ml respectively. The hydrogen peroxide test showed the ethanolic extract able to detoxify hydrogen peroxide resulting in thirteen percent survival of cells. Interestingly, P. betle extract itself showed effective killing of Saureus within thirthy minutes. The RLU in the presence of ethanolic extract showed significant reduction (p<0.05) in oxidative burst by neutrophils. Catalase (58.3kDa) encoded by katA in S.aureus showed significant reduction after one hour treatment with ethanolic extract. The possible mechanism by which ethanolic extract of P.betle is inhibitory to S.aureus by downregulation of an important protein, catalase. Further work is required to quantitate the mRNA of katA expression following treatment with ethanolic of P.betle to confirm mechanism involved

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF ABBREVIATIONS	xiv

CHAPTER ONE: INTRODUCTION

1.1	Medicinal plants	1
	1.1.1 Piper betle leaf	1
1.2	Minimal Inhibitory Concentration (MIC) and Minimal	
	Bactericidal Concentration (MBC)	2
1.3	Staphylococci	3
	1.3.1 Staphylococcus aureus (ATCC 25923)	4
1.4	Neutrophil	5
1.5	Problem Statement	6
1.6	Objectives	7
1.7	Hypothesis	7
1.8	Significance of Study	8

CHAPTER TWO: LITERATURE REVIEW

2.1	Antibiotic resistance	9
2.2	Analysis protein profile of S.aureus	12
2.3	Active compounds in P. betle extract	12
2.4	Therapeutic properties of P.betle extract	12
	2.4.1 Antioxidant	12
	2.4.2 Anti-inflammatory	13
2.5	Pathogenicity of S.aureus	14
2.6	Emerging treats of MRSA, HA-MRSA and CA-MRSA	
	2.6.1 MRSA cases in Malaysia	15

	2.6.2	HA-MRSA	15		
	2.6.3	CA-MRSA	16		
2.7	Trends	of S. aureus to antibiotics resistance	17		
	2.7.1	Antibiotic Susceptibility Characteristics	18		
	2.7.2	β-Lactamase production	18		
2.8	Stress-	responses in pathogenic bacterial	21		
	2.8.1	Alkaline adaptation	22		
	2.8.2	Acid resistance	23		
2.9	Phago	cytosis	23		
2.10	Neutro	Neutrophil responses in the presence of microbes			
	2.10.1	NADPH Oxidase	25		
	2.10.2	Reactive Oxygen Species	26		
2.11	Adapta	ation strategies in S. aureus during pathogenesis	28		
2.12	Virule	nce factor of S.aureus	29		
	2.12.1	Oxidative killing of S.aureus	29		
	2.12.2	Role of Catalase (KatA) as a virulence factor	29		
2.13	Chemi	luminescence - theories and advantages	30		
2.14	Lysost	aphin action on S. aureus	31		
2.15	Gel ele	ectrophoresis	32		
	2.15.1	Non-denaturing Polyacrylamide Gel Electrophoresis			
		(NATIVE-PAGE)	32		
	2.15.2	Sodium dodecyl sulfate-polyacrylamide gel electrophoresis			
		(SDS-PAGE)	32		
CHAI	PTER T	'HREE: MATERIALS AND METHODS			
3.1.	Reage	ents and medias	34		
	3.1.1	Staphylococcus aureus (S.aureus ATCC 25923)			
		from stock culture	34		
3.2.	Buffer	s and gel formulation	34		
	3.3.	Chemicals and equipments	34		
	3.4	Plant extraction	36		
3.5	Growt	h curve	37		
	3.5.1 F	Preculture	37		
	3.5.2 A	Actual growth	37		