UNIVERSITI TEKNOLOGI MARA

MICROPROPAGATION AND ANTIOXIDANT SCREENING OF Lycium barbarum L. (GOJI)

NURUL IZZATI OSMAN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Plantation and Agrotechnology

November 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis/ dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student Student I. D. No. Programme Faculty Thesis Title

Signature of Student

: Nurul Izzati Osman

- : 2010651594
- : Master of Science (Plant Biotechnology)
- : Faculty of Plantation and Agrotechnology
- : Micropropagation and Antioxidant Screening of Lycium barbarum L. (Goji)

Date

: November 2012

ABSTRACTS

Lycium barbarum or known as goij is a type of plant species with potential medicinal values. It derives from Solanaceae family and native to some areas of China. The present study was conducted to apply micropropagation technique on L. barbarum for local propagation and to assess the antioxidant activity by DPPH (diphenyl picryhydrazyl) assay. The best explant and corresponding treatment for micropropagation part were determined. In addition, the antioxidant activities of different ages (two to five month old) and plant parts (leaf, stem and root) of in vitro seedlings were also identified. Leaves and nodes were used as explants in micropropagation. For in vitro regeneration, the optimum combination was found in leaf explant treated with 0.5 mg/L NAA and 0.5 mg/L BAP in MS media. For callus induction, the treatment of 0.3 mg/L 2.4-D and 0.1 mg/L or 0.3 mg/L BAP in MS media were the optimal treatments in leaf explant while 0.1 mg/L BAP with either 0.3 mg/L or 0.5 mg/L 2.4-D in MS media were the optimal treatments in nodal explant. As for somatic embryogenesis, after a series of subculture on MS basal media, the treatment of 1.0 mg/L 2,4-D and 0.1 mg/L BAP in MS media during callus induction phase in leaf explant were identified to be the best combination. Meanwhile, from the DPPH assay, the methanolic extracts from leaf and stem of two month old seedlings were found to have the highest antioxidant activity with the EC_{50} value of 0.08mg/mL. The results revealed that L. barbarum has the potency to be excellently micropropagated and possesses an outstanding activity of antioxidant.

TABLE OF CONTENTS

	0
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	x
LIST OF ABBREVIATIONS	xv

СН	APTE	R ONE: INTRODUCTION	1		
1.1	Background of Study				
1.2	Problem Statement				
1.3	Significance of Study				
1.4	Objectives of Study				
1.5	5 Scope of Study				
CHAPTER TWO: LITERATURE REVIEW					
2.1	Lyciun	n barbarum L.	5		
	2.1.1	Species Description and General Uses	5		
	2.1.2	Pharmacological Activities of L. barbarum	8		
2.2	Plant 7	12			
	2.2.1	Plant Tissue Culture and Micropropagation	12		
	2.2.2	Plant Growth Regulators (PGR)	16		
		2.2.2.1 Auxin	19		
		2.2.2.2 Cytokinin	21		
	2.2.3	Callus Induction and Somatic Embryogenesis	23		
	2.2.4	Previous Studies on Tissue Culture of L. barbarum	26		
2.3	Oxidative Stress and Antioxidant		27		
	2.3.1	Reactive Oxygen Species (ROS) and Oxidative Stress	27		
	2.3.2	Effects of Oxidative Stress on Health Status	31		

Page

	2.3.3	Roles of Antioxidant in Combating Oxidative Stress	34		
	2.3.4	Diphenyl picrylhydrazyl (DPPH) Assay: Free Radical Scavenging	36		
		Activity Assay			
СН	APTE	R THREE: IN VITRO REGENERATION OF Lycium barbarum	41		
L.					
3.1	.1 Introduction				
3.2	.2 Materials and Methods 4				
	3.2.1	Materials	41		
	3.2.2	Explant Materials from In Vitro Seed Germination	42		
	3.2.3	Media Preparation	42		
	3.2.4	Culture and Maintenance of Explants on Different Treatments	42		
	3.2.5	Observation and Data Collection	43		
	3.2.6	Statistical Analysis	43		
3.3	3.3 Results and Discussion				
3.4	Conclu	ision	65		
СН	APTE	R FOUR: CALLUS INDUCTION AND SOMATIC	66		
EM	BRYO	GENESIS IN Lycium barbarum L.			
4.1	Introdu	uction	66		
4.2	Materi	Aaterials and Methods 6			
	4.2.1	Materials	66		
	4.2.2	Explant Materials from In Vitro Seed Germination	67		
	4.2.3	Media Preparation	67		
	4.2.4	Culture and Maintenance of Explants on Different Treatments for	67		
		Callus Induction			
	4.2.5	Induction of Somatic Embryogenesis	68		
	4.2.6	Observation and Data Collection	68		
	4.2.7	Statistical Analysis	68		
4.3	4.3 Results and Discussion				
	4.3.1	Callus Induction of L. barbarum	68		
	4.3.2	Induction of Somatic Embryogenesis in L. barbarum	79		
4.4	Conclu	ision	99		

vi