UNIVERSITI TEKNOLOGI MARA

ON A CLASS OF α -CLOSE-TO-CONVEX FUNCTIONS

NORASHIKIN BINTI KAHARUDIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Computer and Mathematical Sciences

May 2011

Candidate's Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis be found to violate the condition mention above, I voluntary waive the right conferment of my degree and agree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate	<u>Norashikin Binti Kaharudin</u>
Candidate's ID No.	2008340587
Programme	Master of Science
Faculty	Faculty of Computer and Mathematical Sciences
Thesis Title	On a class of α -close-to-convex functions

Signature of Candidate Date

Ain	
16/5/2011	

ABSTRACT

This thesis is concerned with normalized analytic univalent functions f in the open unit disc $E = \{z : |z| < 1\}$ of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots = z + \sum_{n=2}^{\infty} a_n z^n$$
.

The class of normalized analytic univalent functions is denoted by S. In this thesis the concentration is on the class of α -close-to-convex functions, $\mathcal{G}(\alpha, \delta)$ where functions in this class satisfy the condition

$$\operatorname{Re}\left\{e^{i\alpha}\,\frac{f'(z)}{g'(z)}\right\} > \delta,\,\left(z\in E\right)$$

with $|\alpha| \le \pi$, $\cos \alpha > \delta$ and $g'(z) = \frac{1}{1-z}$. The basic properties such as the representation theorem and the extremal properties such as coefficient bounds, distortion theorem, covering theorem and rotation theorem are attained for functions in this class. A result on the radius of convexity, the arc length and the area for functions in this class is also included.

The coefficient inequalities for the class $\mathcal{G}(\alpha, \delta)$ are also discussed which comprise of the upper bounds for the Fekete-Szegö functional, $|a_3 - \mu a_2^2|$ with μ real and the upper bounds for the second Hankel determinant, $|a_2a_4 - a_3^2|$.

ACKNOWLEDGEMENTS

Alhamdulillah, with the grace of Allah S.W.T, I have managed to complete this thesis within the time plan. I would like to express my deepest gratitude to my supervisor, Dr. Ajab Bai Binti Akbarally and my co-supervisor, Prof. Dr. Daud Bin Mohamad for their guidance, advice, cooperation, encouragement and ideas in completing this thesis.

I am thankful to Jabatan Perkhidmatan Awam (JPA) for providing the scholarship to defray my study cost. Also I would like to thank Universiti Teknologi MARA for the support of the research grant 600-RMI/ST/FRGS 5/3/Fst (21/2008).

I owe a great deal to all my colleagues and friends for their comments, advice and moral support during my study.

Last but not least I am grateful to my parents for their blessings and prayers and also to my siblings and relatives for providing support and encouraging words.

TABLE OF CONTENTS

ii
iii
iv
v
vi
vii

CHAPTER 1 : PRELIMINARIES

1.1	Introduction	1
1.2	The class of functions with positive real part, P	3
1.3	The classes of univalent functions	6
1.4	Properties of the functions in certain class	9
1.5	Radius definition	12
1.6	Multivalent functions	13
1.7	Functions with negative coefficient	13
1.8	Objective of the study	14
1.9	Thesis outline	15

CHAPTER 2 : THE CLASS $\mathcal{G}(\alpha, \delta)$

2.1	Introduction	16
2.2	Representation theorem	18
2.3	Extremal properties	24
2.4	Radius of convexity	51
2.5	Arc length and area	57
2.6	Summary	63

CHAPTER 3 : COEFFICIENT INEQUALITIES FOR THE CLASS $\mathcal{G}(\alpha, \delta)$

3.1	Introduction	64
3.2	Fekete-Szegö problem	65
3.3	Second Hankel determinant	80
BIBLIO APPEN	DGRAPHY NDICES	90 96