COMPARISON BETWEEN FOUR NON-CLASSICAL CONJUGATE GRADIENT METHOD FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEM

NIK NURSHAHFINI BINTI DAUD FARAH ELLYNA BINTI MOHAMAD FADZAL

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences Universiti Teknologi Mara

July 2019

DECLARATION BY CANDIDATE

We certify this report to which it refers is the product of our own work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with standard referring practices of the discipline.

FARAH ELLYNA BINTI MOHAMAD FADZAL

2016284372

11 JULY, 2019

.....

NIK NURSHAHFINI BINTI DAUD

2016289504

11 JULY, 2019

ABSTRACT

Conjugate gradient method is an efficient technique to solve unconstrained optimization problem. This method was proposed by Magnus Hestenes and Eduard Stiefel in 1952. For our research, it focus on non-classical which is Fletcher-Reeves (FR) and PRP for hybrid conjugate gradient, modified, scaled and parametrized methods. Hybrid conjugate gradient is the combination of attractive features of known conjugate gradient such as PRP and FR. Modified is where the existing numerator and denominator is modified with new terms. Scaled is when a parameter is added at search direction. Parametrized is added a parameter to a classical conjugate gradient. To find the best method, we compare the methods in terms of its efficiency and robustness. Efficiency is measured by the number of iteration and CPU time. Whereas, robustness is the ability of method to solve the most problems or test function than other methods. As a conclusion, from this study, we could determine what are the factors could make PRP-FR Hybrid, Scaled, Modified and Parametrized methods more efficient and more robust.

TABLE OF CONTENT

DECLARATION BY SUPERVISOR	i
DECLARATION BY CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLE	viii
LIST OF FIGURE	Х
LIST OF ABBREVIATION AND SYMBOL	xi

CHAPTER 1: INTRODUCTION OF RESEARCH

1.1	Introduction	1
1.2	Background of The Study	1
	1.2.1 Local and Global Optimization	4
1.3	Problem Statement	5
1.4	Objectives	6
1.5	Significance of Project	6
1.6	Scope of Project	6
1.7	Project Benefits	7
1.8	Definition of Terms and Concept	7
1.9	Literature Review	12
1.10	Organization of Report	13

CHAPTER 2 : METHODOLOGY

2.1 Introduction	16
2.2 Research method	16
2.3 Fundamental of Conjugate Gradient methods	23
2.3.1 Conjugate Gradient methods	23
2.3.2 General algorithm of conjugate gradient methods	24
2.4 Conclusion	26
CHAPTER 3 : IMPLEMENTATION	
3.1 Introduction	27
3.2 Example of calculation	27
3.3 Conclusion	31
CHAPTER 4 : RESULTS AND DISCUSSION	
4.1 Introduction	32
4.2 Numerical result	32
4.2.1 PRP-FR Hybrid conjugate gradient method	33
4.2.2 Modified conjugate gradient method	43
4.2.3 Scaled conjugate gradient method	46
4.2.4 Parametrized conjugate gradient method	48
4.3 Discussion	53
4.4 Conclusion	56