UNIVERSITI TEKNOLOGI MARA

IN VITRO PROPAGATION AND COMPARATIVE STUDY ON PHYTOCHEMICAL PROFILES OF Pogostemon cablin

WAN NURUL HIDAYAH WAN ANUAR

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

April 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with

the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This

thesis has not been submitted to any other academic institution or non-academic

institution for any degree or qualification.

:

I, hereby, acknowledge that I have been supplied with the Academic Rules and

Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct

of my study and research.

Name of student

Wan Nurul Hidayah Binti Wan Anuar

Student I.D. No.

2009123981

Programme

Master of Science (AS780)

Faculty

Applied Sciences

Title

In Vitro Propagation and Comparative Study on

Phytochemical Profiles of Pogostemon cablin

Signature of Student :

Date

April 2014

ii

ABSTRACT

Pogostemon cablin is an important aromatic plant producing patchouli oil from its leaves' extraction. The main objective of this study was to develop an effective method for in vitro propagation of Malaysian cultivated P. cablin. The effect of varying the strength of MS medium was investigated using node explants. Different concentrations of BAP and NAA were added to both full and half strength MS (Murashige and Skoog) medium for regeneration of this plant. The MS media supplemented with 0.25 mg/l BAP gave the highest number of shoots and length followed by the combinations of hormones 1.0 mg/l BAP and 0.25 mg/l NAA. The in vitro plantlets were then acclimatized in two different substrates that were soil and the soil mixture with vermiculite which was found with 100% survival rate obtained by in vitro grown P. cablin plants acclimatized in soil. The leaves part were harvested from both sources of in vitro and grown plants and ex vitro mother plant of P. cablin for further extraction of its essential oil via hydrodistillation and then were analyzed using GC-MS. The gas chromatogram of the extracted oils from both samples showed similar essential oil profiles with relative amount of patchouli alcohol were higher in the in vitro grown plants than that in ex vitro mother plant. The monomorphic banding pattern analyzed using two universal primers, cytochrome c oxidase (cox1) and maturase K (matK) indicated that the true to type plants of P. cablin were established from in vitro propagation through direct propagation from node explants. Rapid and high multiplication frequency as well as the essential oil content ensures the efficacy of the protocol developed for the production of this industrially important aromatic plant.

TABLE OF CONTENTS

		Page
AUTHOR'S DECLARATION		ii
ABS	ГКАСТ	iii
ACK	NOWLEDGEMENTS	iv
TABLE OF CONTENTS		v
LIST OF TABLES		ix
LIST OF FIGURES		x
LIST OF ABBREVIATIONS		xii
СНА	PTER ONE: INTRODUCTION	
1.1	Background and Problem Statement	1
1.2	Significant of Study	4
1.3	Objectives of Study	5
1.4	Scope and Limitation	5
CHA	PTER TWO: LITERATURE REVIEW	
2.1	Medicinal and Aromatic Plant	6
2.2	Pogostemon cablin	7
	2.2.1 Description of P. cablin	7
	2.2.2 Usages of Patchouli	8
	2.2.3 Commercial Importance of P. cablin	10
2.3	Establishment of In Vitro Culture Technology	11
	2.3.1 In Vitro Technology	. 11
	2.3.1.1 Basal Media Strength	12
	2.3.1.2 Genotype	13
	2.3.1.3 Shoot and Root Induction	13
	2.3.1.4 Subculture	15
2.4	Plant Growth Regulators	15
	2.4.1 Auxins	16
	2.4.2 Cytokinin	17
2.5	Acclimatization	17

2.6	Plant Essential Oil 18		
2.7	Phytochemical Extraction Process	20	
2.8	Phytochemical Analysis Using Gas Chromatography- Mass	20	
	Spectrometry (GC-MS)		
2.9	Genetic Stability Of Tissue Culture Grown Plants	22	
	2.9.1 High Molecular Weight (HMW) DNA Isolation	22	
	2.9.1.1 Extraction of Genomic DNA	23	
	2.9.2 PCR Amplification of Plant Genes	24	
	2.9.2.1 Cytochrome c Oxidase (cox1) Primer	24	
	2.9.3.2 Maturase K (matK) Primer	25	
CHA	APTER THREE: IN VITRO PROPAGATION OF P. cablin		
3.1	Introduction	26	
3.2	Material and Method	27	
	3.2.1 Plant Material	27	
	3.2.2 Node Explants Sterilization	27	
	3.2.3 Media Preparation	30	
	3.2.4 Induction of Shoots and Roots	30	
	3.2.5 Subculture	31	
	3.2.6 Statistical Analysis	31	
3.3	Result and Discussion	31	
	3.3.1 Effects on Sterilization Techniques in P. cablin Explants	31	
	3.3.2 Effects of Different Strength of MS Media on Propagation of P.	37	
	cablin		
	3.3.3 Effects of BAP and NAA on Shoot and Root Development of	40	
	P. cablin		
3.4	Conclusion	46	
	APTER FOUR: ACCLIMATIZATION OF P. cablin PLANTLETS	46	
4.1	Introduction	48	
4.2	Materials and Method	49	
	4.2.1 Acclimatization	49	
	4.2.1.1 Plant Material	50	