COMPARISON IN APPROXIMATING MAXIMUM SPEED ON ROAD BETWEEN CUBIC BEZIER CURVE AND CUBIC TRIGONOMETRIC BEZIER CURVE WITH A SHAPE PARAMETER.

NORSYAFIKA BINTI YUNAIDI NOR SYALSABILA BINTI GHAZALI

Thesis Submitted in Fulfillment of the Requirement for Bachelor of Science (Hons.) Computational Mathematics in the Faculty of Computer and Mathematical Sciences University Teknologi Mara.

JULY 2019

DECLARATION BY CANDIDATE

We certify that this report and the project to which it refers is the product of our work and that any idea or quotation from the work of other people, published or otherwise are fully acknowledge in accordance with the standard referring practices of the discipline.

NORSYAFIKA BINTI YUNAIDI 2016289598 11 JULY 2019

NOR SYALSABILA BINTI GHAZALI 2016289612

11 JULY 2019

ABSTRACT

This project describes an alternative way in estimating design speed or the maximum speed allowed for a vehicle to drive safely on a road using curvature information from Bezier curve and Cubic Trigonometric Bezier curve fitting on a map. The road in Tanah Rata Cameron Highland, Malaysia was chosen. The values of the curvature were computed by analytical differentiation of the Bezier Curve and Cubic Trigonometric Bezier Curve continuity between joined curves in the process of mapping the road. When the value of curvature is high, the value of radius becomes smaller thus the vehicle needs to bend sharply. The result was verified with the manual calculation of the curvature from the map. The objective of this research is to conclude the curvature information and determine which the best method between Cubic Bezier curve and Cubic Trigonometric Bezier curves with the goal of approximating the maximum speed of road. The comparison between two methods show that both methods produced the best maximum speed for the real road. However, after doing the readjustment, Cubic Trigonometric Bezier is the best method and able to produce best speed of road.

TABLE OF CONTENT

DECLARATION BY SUPERVISOR	i
DECLARATION BY CANDIDATE	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix

CHAPTER 1: INTRODUCTION OF RESEARCH

1.1. Introduction	1
1.2. Background of Study	1
1.3. Problem Statement	3
1.4. Objectives	4
1.5. Significant of Project	4
1.6. Scope of Project	5
1.7. Project Benefits	5
1.8. Definition of Terms and Concepts	6
1.9. Literature Review	9
1.10 Organization of Report	12

CHAPTER 2: METHODOLOGY

2.1 Introduction	14
2.2 Research Step	14

2.3 Bezier curve	17
2.4 Cubic Bezier Curve	18
2.5 Cubic Trigonometric Bezier Curve with A Shape Parameter	24
2.6 Estimation of speed	28
2.7 Conclusion	30

CHAPTER 3: IMPLEMENTATION

3.1 Introduction	31
3.2 Research Data	31
3.3 Generate the Road from Control Points	32
3.4 Cubic Bezier Curve	34
3.4.1 Curvature of The Road	35
3.4.2 Radius of The Road	39
3.4.3 Speed of The Road	40
3.4.4 Re-Adjustment the Control Point	42
3.5 Cubic Trigonometric Bezier Curve	44
3.5.1 Curvature of The Road	46
3.5.2 Radius of The Road	49
3.5.3 Speed of The Road	49
3.5.4 Re-Adjustment the Control Point	50
3.6 Conclusion	55

CHAPTER 4: RESULT AND DISCUSSION

4.1 Introduction	56
4.2 Design from The Real Figure	56