UNIVERSITI TEKNOLOGI MARA

DESIGN AND ANALYSIS OF YAW STABILITY AND CONTROL SURFACES FOR UITM'S BWB UAV BASELINE-II E-4

FIRDAUS BIN MOHAMAD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Mechanical Engineering

September 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of student	: Firdaus Bin Mohamad
Student I.D No	: 2009783367
Programme	: Master of Science in Mechanical Engineering
Faculty	: Faculty of Mechanical Engineering
Thesis Title	: Design and Analysis of Yaw Stability and Control
	Surfaces for UiTM's BWB UAV

Baseline-II E-4

: September 2012

Signature of Student

Date

ABSTRACT

UiTM is currently developing a blended wing body aircraft known as UiTM's BWB UAV Baseline-II. There are a few revolutions made since 2009. The one which concerned with directional control is known as UiTM's BWB UAV Baseline-II E-4. This aircraft is categorized as a tailless aircraft. Hence, it is unequipped with any vertical tail to perform the directional motion. This report presents the design process of alternative yaw control surfaces. The alternative yaw control surfaces are designed in order to provide the restoring or rectifying effect to the BWB aircraft. Trade-off study is performed in order to select the best yaw control surfaces for UiTM's BWB aircraft. From the study, split drag flaps are selected as vaw control surfaces. These control surfaces are selected depending upon the criteria such as the aspect ratio and wing sweep angle. Deflection of the split drag flaps on the one side of the wing will produce asymmetric drag force and as a consequence, vawing moment will be generated. The selected yaw control surfaces will be analyzed using the Computational Fluid Dynamics (CFD) software in order to obtain the aerodynamics data such as drag coefficients (C_D), side force coefficients (C_V), lift coefficients (C_I) and vawing moment coefficients (C_n). The simulation is executed at various sideslip angles (B) up to 30° and split drag flaps total deflection (δ_{T}) angles up to 60°. From the results, it is noticed that the UiTM's BWB aircraft can perform the directional motion using the split drag flaps. However, lower deflection of split drag flaps is still inadequate to provide restoring yawing moment for the aircraft. This can be seen when negative vawing moment are still generated at the certain sideslip angles. Meanwhile, higher split drag flaps deflection ($\delta_T > 30^\circ$) will produce positive yawing moments throughout the sideslip angles.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiii

CHAPTER ONE: INTRODUCTION

1.1	Background	1
1.2	Problem Statement and Research Question	4
1.3	Objectives	5
1.4	Research Project Scope	5
1.5	Research Project Significance	6
1.6	Research Project Methodology	6
1.7	Thesis Outline	8

CHAPTER TWO: LITERATURE REVIEW

2.1	UiTM	's BWB Baseline-II UAV E-4 specification and performance	10
2.2	2 Directional Stability		15
	2.2.1	Typical Values Of $C_{n\beta}$ For Various Aircrafts Configuration	17
	2.2.2	Directional Control Effectiveness	17
2.3	Yaw Control Surfaces		18
	2.3.1	Rudder	18
	2.3.2	Split Drag Flaps	21
	2.3.3	Winglet Rudders	23
	2.3.4	Inboard and Outboard Ailerons	25

2.4	Parameters Consideration to Design Yaw Control Surfaces For Tailless Aircr		
			26
	2.4.1	Aspect Ratio	26
	2.4.2	Wing Sweep	27
2.5	Computational Fluid Dynamics		28
	2.5.1	Turbulence Models in CFD	28
	2.5.2	Spalart-Allmaras (S.A) Turbulence Model	29
	2.5.3	Grid Sensitivities Study	30
2.6	UiTM	Low Speed Tunnel LST-1	31

CHAPTER THREE: CONTROL SURFACES SELECTION AND DESIGN

3.1	Yaw Control Surfaces Design Requirement	34
3.2	Trade-off Study	34
	3.2.1 Trade-Off Study For Yaw Control Surfaces Candidates	35
3.3	Design Constrains	37
3.4	Dimension	38
3.5	Design the Control Surfaces	39
3.6	Split Drag Flaps Working Principle	42
3.7	Inboard and Outboard Ailerons Working Principle	43

CHAPTER FOUR: COMPUTATIONAL FLUID DYNAMICS (CFD) SETUP AND VALIDATION PROCESS

4.1	Computational Fluid Dynamics (CFD) Procedure		44
4.2	Pre-Processing (Grid Generation)		45
4.3	Numerical Computation		48
4.4	Grid Sensitivity Analysis		51
4.5	.5 Validation		54
	4.5.1 Reynolds Nu	mber Effects	56
	4.5.2 Drag Coeffic	ient Analysis	58
	4.5.3 Lift Coefficie	ent Analysis	60
4.6	Post- Processing		62