UNIVERSITI TEKNOLOGI MARA

EFFECTS OF JOINT DESIGNS ON FRACTURE TOUGHNESS OF THE BUTT WELDS ALUMINIUM ALLOY 5052

DAHIA ANDUD

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Mechanical Engineering

October 2012

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of the Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Dahia Andud
Student I.D.No.	:	2008267544
Programme	:	Master of Science (Research)
Faculty	:	Mechanical Engineering
Thesis/Dissertation	:	Effects of Joint Designs on Fracture
Title		Toughness of the Butt welds Aluminium Alloy
		5052
Signature of Student	:	fla
Date	:	October 2012

ABSTRACT

This research was carried out to analysis the chemical composition, fracture mechanism and mechanical properties of the butt weld aluminium alloy 5052 that made with different joint design. Another aim was to correlate the impact strength and fracture toughness of the butt welds AA5052. The study was focused on experimental methodology. The results of the study were that the weld metal has a coarse grain structure which is harder compared with the HAZ that has a grain growth structure. The fracture surface of weld metal exhibit ductile fracture, while the HAZ implies mixed mode ductile fracture. The chemical weight percentage, ductility, tensile strength, fracture toughness and impact strength of the entire butt weld are dependable on the groove and bevel angle of the welded joint design. However, joint design does not influence the hardness of the entire butt welds AA5052 but influenced by the heat input of the welding. The correlation between impact toughness and fracture toughness was developed, however further works need to be conducted in order to obtain proper data for the correlation. The principal conclusion was that joint design has a significant effect on the chemical weight percentage and mechanical properties of the butt welds AA5052. However further works need to be conducted on the correlation between impact strength and fracture toughness.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF NOMENCLATURES	xiii

CIII	TAI TER ONE. INTRODUCTION	
1.1	Background of the Research	1
1.2	Problem Statement	1
1.3	Purpose and Objectives of the Research	2
1.4	Research Methodology	3
1.5	Significance of the Research	4
1.6	Scope and Limitation of Research	4

1

CHAPTER TWO: LITERATURE REVIEW

CHAPTER ONE. INTRODUCTION

2.1	Introduction	5
2.2	Welding Joint Design.	5
	2.2.1 Butt Joints Design	6
	2.2.1.1 Single V Butt Joint	7
	2.2.1.2 Single Bevel Butt Joint	8
	2.2.2 Welding Joint Designs for Aluminium	9
2.3	Aluminium alloys	10
	2.3.1 Welding Aluminium Alloys	11
	2.3.1.1 Effects of Welding Parameter	12
2.4	Aluminium Alloy 5052	13
2.5	Introduction to Fracture Mechanics	15
	2.5.1 Stress Intensity Factor	17

	2.5.2 Application of Fracture Mechanics on the Welded	18
	Structure of Aluminium Alloys	
2.6	Impact Strength	22
	2.6.1 Impact Strength Calculation	23
	2.6.2 Application of Impact Strength Method on the Welded	24
	aluminium Alloys	
2.7	Correlation between Impact Strength and Fracture Toughness	26
СН	APTER THREE: EXPERIMENTAL METHODOLOGY	
3.1	Introduction	29
3.2	Welding Preparation Activities	29
	3.2.1 Plate preparation	29
	3.2.2 Welding Joint Design Preparation	30
	3.2.3 Pre-Welding Procedure Specification	31
	3.2.4 Welding Process and Techniques	31
3.3	Test Specimen Preparation	33
	3.3.1 Tensile Specimen	33
	3.3.2 Compact tension (CT) Specimen	34
	3.3.3 Charpy V Notch specimen	36
	3.3.4 Hardness and Microstructure Specimen	37
3.4	Experimental Procedures	38
	3.4.1 Tensile Test	38
	3.4.2 Fracture Toughness Test	39
	3.4.3 Determination of Fracture Toughness K _Q	40
	3.4.4 Charpy V Notch Impact Test	40
	3.4.5 Determination of Correlation between Impact Strength	42
	and Fracture Toughness	
	3.4.6 Hardness Test	42
	3.4.7 Spectrometer Test	43
	3.4.8 Microstructure Examination	44
	3.4.9 Fracture Examination	45