UNIVERSITI TEKNOLOGI MARA

TECHNICAL REPORT

MEASURING THE EFFICIENCY OF TECHNOLOGY COMPANIES IN MALAYSIA AND COMPUTING THE FULL RANKING USING RESTRICTIONS IN DEA MODELS

P56S19

AIMI FARZANA BINTI AHMAD FAIRUS (2017739649) MUHAMMAD SYAHMI BIN MAJID (201736443) NUR ZANARIAH BINTI ABDUL RAOF (2017990459)

Report submitted in partial fulfilment of the requirement for the degree of Bachelor of Science (Hons.) Computational Mathematics Faculty of Computer and Mathematical Sciences

DECEMBER 2019

ACKNOWLEDGEMENTS

IN THE NAME OF ALLAH, THE MOST GRACIOUS, THE MOST MERCIFUL

Firstly, we are grateful to Allah S.W.T for giving us the strength to complete this project successfully.

We would like to express our gratitude to our supervisor Prof Madya Dr. Nur Azlina Binti Abd Aziz as well as our MSP lecturer Dr. Zati Aqmar Binti Zaharudin who gave us the golden opportunity to do this wonderful project on the topic of "Measuring the Efficiency of Technology Companies and Computing the Full Ranking using Restrictions in DEA models", which they also helped us in doing a lot of Research and we came to know about so many new things. We are really thankful to them.

Secondly, we would also like to thank our family and friends who helped us a lot in finalizing this project within the limited time frame.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSi
TABLE OF CONTENTSii
LIST OF TABLESiii
LIST OF FIGURESiii
ABSTRACTiv
1. INTRODUCTION
1.1 Problem Statement
1.2 Objectives
1.3 Scope and Limitations
1.4 Significant and Benefit of Study
A DAGMODOUND THEODY AND LITTED ATTUDE DEVIEW
2. BACKGROUND THEORY AND LITERATURE REVIEW
2.1 DEA model
2.1.1 CCR model
2.1.2 BCC model
2.2 DEA as Measurement Tools
2.3 Other Methods for Fully Ranking
3. METHODOLOGY AND IMPLEMENTATION
3.1 Model Development (Stage 1)
3.1.1 Selection of DMU
3.1.2 Specification of Inputs and Outputs
3.2 Transform the Data 18
3.3 Obtain Fully Ranking (Stage 2)
3.4 Numerical Example
3.5 Comparing of Results
4. RESULT AND DISCUSSION22
T. NESCET THE DISCUSSION
5. CONCLUSIONS AND RECOMMENDATIONS28
4 PERFECTION
6. REFERENCES

LIST OF TABLES

Table 2.1: CCR Input Oriented Model	
Table 2.2: CCR Output Oriented Model	7
Table 2.3: BCC Input Oriented Model	8
Table 2.4: BCC Output Oriented Model	9
Table 3.1: Raw Data of Technology Company	
Table 4.1: Adjusted Data of Technology Company	22
Table 4.2: Efficiency Score by Using DEA	23
Table 4.3: Efficiency and Ranking of DMUs by using DEA	24
Table 4.4: The Quantity of Balance Index	25
Table 4.5: Balance Index and Efficiency Score	26
Table 4.6: Complete Ranking of DMUs by DEA and Restrictions	27
Table 4.7: Comparison between Ranking by Restriction and Super Efficiency	28
LIST OF FIGURES	
Figure 2.1: Framework of DEA Model	6
Figure 3.1: Flowchart of Methodology	
Figure 3.2: Production Model	14
Figure 4.1: Efficiency of DMUs by Using DFA	24

ABSTRACT

Efficiency evaluation is very necessary as it is capable of determining the company's financial performance. Efficiency characterizes how well businesses develop outputs while handling their inputs. Therefore, Data Envelopment Analysis (DEA) will be used in this study to determine the relative effectiveness of Decision-Making Units (DMUs). The objective of this study is to compare the efficiency of listed technology companies in Malaysia for the period of 2014 to 2018 by using DEA.

However, DEA cannot provide full ranking where the same efficiency score can be obtained. This paper therefore introduces a new method for the complete ranking of decision-making units, namely restrictions to rank technology companies. This method can be used because no changes in the models are required.

In this study, the DEA model is solved using the Efficiency Measurement System (EMS) software. The result of this study shows that in Malaysia EFORCE, GTRONIC, KESM, MPI, UNISEM and VITROX are listed as efficient technology companies. We calculated a full rank for those six companies to show which companies are more efficient. Consequently, the formula of the balance index is used to calculate the new ranking based on the efficient company. This study is important because it helps to recognize the efficient technology companies that can serve a benchmark for further references for other inefficient companies.