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ABSTRACT 

 

The objective of this work is to investigate the dynamic behaviour of a pitch-

plunge fluttering aerofoil in the presence of non-linear stiffness such as free-

play mechanism. In this paper we propose to represent the problem in a 

system dynamic approach with a closed loop system. A transfer function for 

generating the aerodynamic forces based on the dynamic response of 

structure is constructed in the feedback loop with the aid of Pade rational 

function approximation. The effects of the non-linear factors therefore can be 

included conveniently in time domain and by using this approach the stability 

of limit cycle oscillations (LCO) can be analysed accurately. 

 

Keywords: LCO, nonlinear structures, flow structure interactions 

 

 

Introduction 
 

Aero-elasticity is a multi-physics discipline that involves the loads of 

aerodynamics, elastic and inertial generated by the motion of structure. One 

of the most important phenomenon in this field is flutter regarding to its 

harmful effect to the structure. This flow-induced vibration under certain 

conditions can be self-excited and divergently unstable. In aerospace industry 

the boundary of flutter instability is usually determined by V-g method, a 

computational technique in frequency domain based on the balance of energy 

of the oscillating wing and the flow by maintaining a harmonic function of 
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the aero-elastic response. In this method explained remarkably by Stanciu et 

al [5], the critical velocity of the flow is determined by solving the complex 

eigen value problem of the aero-elastic system. Although the method can 

give accurate results it is only effective for linear cases. However in real 

aircraft there are non-linear factors of structure such as free-play, hysteretic 

and large deformation that need to be taken into account. Trickey et al [7] 

observed that certain cases in regards to excessive LCO found in some 

Boeing and Airbus aircrafts and stated that the characterization and 

explanation of this nonlinear vibration were important for fatigue and 

maintenance issues. In their research, the methods of nonlinear dynamics 

were developed for these purposes and they proposed a novel system-

identification technique to generate an approximation of LCO to be used for 

online monitoring of dynamic behavior close to bifurcation condition. 

Pereira et al [4] showed an example of LCO due to the existence of hardening 

nonlinearity of wing stiffness in pitching of F-16 aircraft that caused 

persistent aero-elastic problems. Therefore the knowledge and 

comprehension of nonlinear aero-elasticity are of increasing importance in 

aircraft design. In their work an investigation on the combined influence of 

hardening and free-play nonlinearities on the bifurcation response was carried 

out.  

A document regarding the missing of MH370 Boeing 777 is also concerned 

about the phenomena of aero-elasticity. The failure analysis of the right-side 

flaperon that was found in French territory’s Reunion Island [8] on 2015, 

reported that flutter (LCO) caused to repetitive loading which in turn 

imparted stress fatigue in the primary aluminum alloy attachment 

components. 

This paper has an intention to simulate numerically the interaction of 

flow-structure as a dynamic system by arranging the structure part as a 

principle plant and the aerodynamic part as a feedback loop subsystem. The 

analysis of structural response in time domain enables to insert the 

nonlinearities conveniently. The part of structures is reconstructed in a form 

of block-diagram representing a dynamic system where the inertial loads are 

expressed explicitly as a result of the elastic loads and frictions generated in 

the progressing structure response due to external aerodynamic excitations, 

while the part of aerodynamics is arranged as a feedback-loop transfer 

function activated by the structural response. For this purpose, the unsteady 

aerodynamic forces calculated by using singularity method in frequency 

domain have to be conversed to Laplace variable s by using Padé’s 

approximation rational function. Botez et al [3] in conducting flutter analysis 

of CL-604 Bombardier, used a least squares technique utilizing certain 

number of lagging terms, and the approximation showed the best 

aerodynamic forces conversion from frequency into Laplace domain in terms 

of execution time and precision. 
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In analysing LCO on mechanical system in general where there is 

involvement of various physical parameters such as nonlinear stiffness, 

hysteretic and free-play, and more specifically the influence of damping to 

the stability of the oscillations, Sinou and Jezequel [1] proposed to employ a 

two-degree-of freedom model for the sake of simplicity. With the same spirit, 

in this research we use a pitch-plunge two dimensional wing-section model in 

analysing the effects of structural nonlinearities on a binary classical flutter. 

 

Stability Analysis of Aero-elastic System 

 
Description of the Two-Degree-of Freedom Model  
Figure 1 shows schematically a two-degree of freedom pitch-plunge 

fluttering aerofoil model. The support system consists of axial and rotational 

springs are attached to a rigid aerofoil on a point so-called elastic axis. These 

two flexible supports restrict the motions of the aerofoil with the exception in 

the two modes of translation and rotation. For the case of zero damping, the 

equations of motion of the aerofoil subjected a uniform flow can be written 

as: 
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where h and α are the degree of freedom in plunging and pitching 

respectively as explained in Figure 1, while kh and kα are the spring stiffness 

in translation and in rotation respectively. 

 
Unsteady Aerodynamic Model 
Theodorsen’s unsteady aerodynamic model as explained by Brunton and 

Rowly [6] excellently is used in this work. This method analyses the motions 

of the aerofoil in frequency domain and it assumes that the amplitudes are 

small. In the analysis the aerofoil is considered thin, the flow is inviscid 

incompressible with no separation or intrusion.  

In this method the frequencies of the harmonic oscillating motions are 

considered relatively slow therefore the transversal and rotational velocities 

of the aerofoil contribute as an additional angle of attack to the total lift. As a 

result the quasi-steady of the lift coefficient CL
QS can be expressed 

proportional to the total angle of attact: 
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In thin aerofoil theory the lift gradient can be considered equals to 2π, the 

vortex singularity is located at the aerodynamic centre (a quarter of the chord 
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from the leading-edge) and the downwash velocity is focused at three quarter 

of the chord. 

The aerodynamic loading consisted of lift and pitching moment can be 

presented as:    QS

LCkClcUL 2

2

1
                                  (3)                                  

  QS

Lac CkClcUM 22

2

1
                                      (4) 

where c and l are the chord and the span of the 2D wing respectively. C(k) is 

Theodorsen’s function showing that there is a phase difference between 

aerodynamic loading and wing section’s motion. The parameter k called 

reduced (non-dimensional) frequency is defined as ωb/U∞. 

 

 
Fig 1. Two-degree-of freedom aero-elastic model 

 

Flutter Stability Boundary 
V-g method based on the balance of energy between the flow and the motion 

of the structure is used to determine the flutter boundary for a linear aero-

elastic system. The analysis is conducted in frequency domain where 

harmonic motions in pitching and plunging are imposed to the dynamic 

response of the structure to represent the state of the aero-elastic system in 

the stability boundary. In order to maintain harmonic motions of the 

structure, a virtual structural damping g has to be inserted to the system hence 

the equation of motions adopting from Equation (1) becomes: 
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By imposing a harmonic functions to the motions in both plunging and 

pitching: 
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henceforth the aerodynamic loading can be represented as: 
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where the generalized aerodynamic matrix Q(ik) in complex form can be 

written as: 
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then the equations of motion showed in Equation (6) will lead to the solution 

of the eigen values problem as presented below: 
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Table 1 

Value of physical parameters 

Notation Description Value 

a 

b 

c 

l 

e 

xα 

m 

mp 

Ip 

kh 

kα 

E.A. 

a.c. 

c.g. 

Relative distance to half chord from midchord 

Half chord 

Chord  

Span of the wing model 

Relative distance from E.A. to a.c. 

Relative distance from c.g. to mid-chord in b 

Plunging mass 

Pitching mass 

Mass moment of inertia in pitching 

Axial stiffness in plunging 

Rotational stiffness in pitching 

Elastic axis 

Aerodynamic centre 

Centre of gravity 

-0.5 

0.05 m 

0.1 m 

0.28 m 

0.0 

0.34 

1.35 kg 

0.93 kg 
7.741e-4 kgm2 
906.81 N/m 

1,1445 Nm 

 

Elaborating a certain range of reduced frequency k on Equation (7) will give 

as a result, a range of complex eigen values for both modes of motion, where 

the real parts relate to the natural frequencies while the imaginary parts to the 
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artificial structural damping of the aero-elastic system for certain values of 

flow velocity, associated with the reduced frequency k. 

An aero-elastic flutter model with NACA0015 wing section is fabricated and 

installed in the wind-tunnel in vertical position as shown in Figures 2a and b. 

The each end of the wing model is mounted on a support system consists of a 

pair of steel cantilever beams to allow the side-slipping translation motion 

and a warm spring for the yawing rotational motion. 

 

  
Fig 2a and 2b. Aero-elastic wind-tunnel model, NACA 0015 aerofoil, two-

degree-of freedom system in translation and rotation, in the cross-section of 

30 cm x 30 cm test-section. 

 

The solution of the eigen value problem in Equation (11) yields two curves of 

natural frequencies and two artificial structural damping depending to the 

flow speed as presented in Figures 3 and 4 respectively. The critical speed is 

defined where one of the artificial structural damping curves intercepts the 

real actual structural damping of the structure.  

 
Fig 3. Natural frequencies in translation and rotation modes (in Hertz) versus 

flow velocity (in m/second) 
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Fig 4. Artificial structural damping parameters g in translation and rotation 

modes versus flow velocity (in m/second). The solid horizontal red colour 

line is the value of structural damping of steel (the material of the both 

springs) 

 

Figure 4 shows the flutter boundary of this linear aero-elastic model where 

the critical flow speed is around 15 m/s. The negative values of the damping 

curves indicate that an amount of energy has to be supplied to the system to 

have a harmonic response and for the positive ones the energy has to be 

dissipated such to maintain the harmonic stable response. In Figure 3 the 

frequencies of two aero-elastic modes i.e. translation and rotation approach 

each other as the flow speed is getting close to the critical speed of flutter 

boundary. The phenomenon so-called internal resonance shows that there is 

an interchange of energy between the two modes of vibration.  

 

Nonlinear Behaviour of the Aero-elastic System 
 
System Dynamic Approach 
Consider a structure with M, C, K as the matrices of mass, damping and 

stiffness respectively, subjected to an external loads F(t). The dynamic 

response x(t) basically can be presented in an arrangement of block diagrams 

based on the equation of motion by showing explicitly the inertial internal 

loads: 

xKxCtFxM   )(                                              (12) 

The above expression can be considered as a junction with the input of F(t) 

which consists of a disturbance and aerodynamic forces encountered by 

closed loop feedback signals of C and K, brings forth the output of inertial 

load signals. Figures 5 explains the block diagram of this mechanical system. 
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Fig 5. Block diagram for simulation of a structure subjected to an external 

load and some initial conditions 

 

To be able to model the effects of structural non-linearity accurately and to 

simulate conveniently in time domain, the aero-elastic system needs to be 

represented as a system dynamic model. In this system the aerodynamic 

forces are generated by the lifting surface as a result of the structural 

temporal response in a closed loop form. For this purpose the unsteady-

aerodynamic forces calculated in frequency domain based on harmonic 

motions of the natural modes as expressed in Equation (10), are now 

conversed in Laplace variable using Padé rational function approximation: 
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The lagging term parameters βj, for j =1, n, are real and less than1, where the 

values and the numbers are determined arbitrarily to optimize the 

approximated curves. The matrices A0, A1 and A2 in real values are 

determined by curve-fitting using least square technique in complex plan to 

approximate the values of the aerodynamic forces calculated in frequency 

domain. Figures 7a and 7b present the results of the curve-fitting. 

Based on the dynamic response of structure in terms of x(t), d/dt x(t) and 

d2/dt2 x(t) the aerodynamic forces in the forms of lift and pitching moment 

can be calculated by using a transfer function constructed using Equation 

(12). Figure 6 shows the arrangement of the block diagrams to express the 

aerodynamic transfer function. 
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Fig 6. Aerodynamic transfer function 

 

 
 

Fig 7a. Matrix Q11 signifying the generalized aerodynamic forces where the 

points are values of calculated in frequency domain for a certain range of 

reduced frequency k, and the solid line is the approximated curve in Laplace 

variable s by using 4 parameters of lagging term βj of 01, 0.2, 0.3 and 0.4 
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Fig7b. Matrix Q21 signifying the generalized aerodynamic forces where the 

points are values of calculated in frequency domain for a certain range of 

reduced frequency k, and the solid line is the approximated curve in Laplace 

variable s by using 4 parameters of lagging term βj of 01, 0.2, 0.3 and 0.4 

 
The interaction of flow and structure can be simulated by arranging the block 

diagrams of structure showed in Figure 5 as a subsystem, coupled with the 

aerodynamic forces showed in Figure 6 where the calculation is conducted in 

time domain for each step of time discrete, simultaneously. The block 

diagrams of the plant representing the structure and the aerodynamic forces 

subsystem as a feedback loop have to be arranged such that all the processes 

are enhanced in integral operations to ensure the minimum numerical errors 

and the convergence of the solutions.  

Figures 7 a and b explain the curve fitting of the generalised aerodynamic 

forces in matrix Q11 and Q21 calculated in a range of frequency in descretized 

data with the approximation rational function of Padé showed in solid lines. 

The other matrix of the generalised aerodynamic forces Q12 and Q22 are zero 

as the consequence of the location of the elastic axis coincides with the 

aerodynamic centre of the wing section. 

By putting together the block diagram representing the structure as shown in 

Figure 5 with the aerodynamic transfer function shown in Figure 6 as a 

feedback loop based on the structural response to generated aerodynamic 

forces, the flow structure interaction can be represented as two subsystems 

interconnected to each other, triggered by a disturbance subsystem as 

explained in Figure 8. 
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Fig 8. Simulation of flow-structure interactions is carried out by arranging 

the subsystem of structure containing mass, mass moment of inertia, 

structural stiffness and damping, coupled with aerodynamic forces in lift and 

pitching moment as functions of the dynamic response of structure. 

 

For validating the numerical model and simulation showed in Figure 8, the 

case of linear elastic of the aero-elastic system is conducted first. Figures 9 

and 10 shows the response of the aerofoil in translation for the airflow speeds 

of below and above the flutter boundary. 

 

 
Fig 9. Convergent translation response of the aerofoil at the flow speed of 13 

m/s with initial condition of 4 cm displacement  

 
The simulation for the aero-elastic system at critical airflow under a certain 

disturbance or initial condition will evidently yield a constant amplitude of 

sinusoidal motions. 
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Fig 10. Divergent unstable response of the aerofoil due to a small impulse 

disturbance at the flow speed of 16 m/s in translation 

 

Flutter Limit Cycle Oscillation 
Phase portraits representing the relationships between the displacement and 

the velocity of the response will be used to analyse the dynamic behaviour of 

the nonlinear system. 

Figure 11 presents the phase diagram or the case of linear aero-elastic system 

where the ellipsoidal trajectories shows a stable harmonic response of flutter 

boundary at the wind speed of flutter boundary. 

 

 
Fig 11. Phase portrait of the linear aero-elastic system at the flutter speed 

boundary of 14 m/second 

 

A structural nonlinear factor may influence the dynamic behaviour of an 

aero-elastic system. The insertion a free-play in rotation into the support 

mechanism of the model for an example, at the wind speed below the critical 

flutter, the system will not reduce entirely the dynamic response of the 

aerofoil under a certain perturbation as in the linear case, but introduce an 

oscillation with constant amplitude at a certain frequency. Figure 12 shows a 
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limit cycle oscillation at the wind speed of 13.0 m/s of the aero-elastic system 

under an initial condition. 

 
Fig 12. Phase portrait of the aero-elastic system with free-play mechanism of 

2 degrees of rotation at the wind speed of 13.0 m/s due to initial displacement 

of 4 cm 

 

Furthermore structural nonlinear factors may also influence the limit of 

stability. The free-play mechanism reduces the flutter critical speed for 

around 0.5 m/sec as showed in Figures 13 and 14. 

 
Fig 13. Phase portrait for the existence of two degree free-play mechanism in 

rotation at the wind speed of 13.5 m/s with the initial condition of 4 cm 

displacement 
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Fig 14. Phase portrait for the existence of two degree free-play mechanism in 

rotation at the wind speed of 14.0 m/s  

 

At the critical speed calculated for linear system but with the existence of the 

free-play, the system will generate an unstable divergent structural response 

as explained in Figure 14. 

From the wind-tunnel flutter testing it is observed that a moderate oscillation 

starts at 13 m/s flow speed and becomes severe vibration at 18 m/s. It can be 

concluded that a small free-play mechanism involves in the lower speed (less 

than the critical boundary), and a hardening-stiffness behaviour for the higher 

speed. 

 

Conclusion 
A two degree-of-freedom in transversal and rotational motions wing section 

for describing classical binary flutter mechanism is used to investigate the 

effect of free-play nonlinearity to the stability of the aero-elastic system and 

the associated limit cycles. The aerodynamic forces are calculated by using 

Theodorsen’s method in frequency domain based on thin aerofoil theory. 

By representing the aero-elastic system as a closed loop block diagrams of a 

dynamic system where the structural part serves as the main plant of the 

system and the aerodynamic transfer function as a feedback loop calculated 

based on the dynamic structural response, it is suitable to carry out the 

simulation on the platform of Simulink-Matlab. For this purpose the 

aerodynamic forces have to be conversed in Laplace domain. 

The work shows the effectiveness of the flow-structure interactions when the 

system is considered as a dynamic system where the response can be 

analysed in time domain and the effects of nonlinear factors can be 

conveniently included simultaneously. 
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The limit cycle oscillation and stability can be showed numerically by 

representing the phase portrait of the response. At the speed of airflow below 

the critical speed of flutter, a constant oscillation may happen due to a free-

play nonlinearity. It can be shown that the stability boundary becomes 

smaller than the critical speed.  
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