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ABSTRACT 

 

Information criterion is an important factor for model structure selection in 
system identification. It is used to determine the optimality of a particular 
model structure with the aim of selecting an adequate model. A good 
information criterion not only evaluate predictive accuracy but also the 

parsimony of model. There are many information criterions those are widely 
used such as Akaike information criterion (AIC), corrected Akaike 
information criterion (AICc) and Bayesian information criterion (BIC). This 
paper introduces a new parameter-magnitude based information criterion 

(PMIC2) for identification of linear and non-linear discrete time model. It 
presents a study on comparison between AIC, AICc, BIC and PMIC2 in 
selecting the correct model structure for simulated models. This shall be 
tested using computational software on a number of simulated systems in the 

form of discrete-time models of various lag orders and number of 
terms/variables. It is shown that PMIC2 performed in optimum model 
structure selection better than AIC, AICc and BIC. 
 

Keywords: Akaike Information Criterion, Bayesian Information Criterion, 

Model Structure Selection, Parameter Magnitude-Based Information 

Criterion 

 

 

Introduction 
 

System identification can be defined as approximating dynamic system 

models using experimental data [1]. Its basic idea is to compare the time 

dependent responses of the actual system and identified model based on a 
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performance function. Referring to information criterion, it measures how 

well the model response fits the system response [2]. Data acquisition, model 

structure selection, parameter estimation and model validity tests is the 

procedure of identification steps [3]. Normally, the identification procedure 

consists of estimating parameters of different models, then selecting the 

optimum model complexity within the set. The systematic errors will 

decrease when increasing the model complexity and at the same time the 

model variability also increases [4]. 
Model accuracy and model parsimony are also known as variance and 

bias: 𝑓(𝐽) = 𝑉𝑎𝑟(𝐽) + 𝐵𝑖𝑎𝑠(𝐽). These two considerations need to be 

evaluated when selecting a model structure [5]. Therefore, selecting the 

model with the smallest variance within the set will not be good because 

when more parameters are added, it will continue to decrease. At a certain 

complexity, the additional parameters no longer reduce the systematic errors 

but are used to follow the actual noise realization on the data. To overcome 

this problem, such loss function or information criterion is extended with a 

bias term in order to compensate the model complexly. In short, the 

information criterion should be able to detect undermodelling (too simple 

model) as well as overmodelling (too complex model). Undermodelling 

occurs when the considered model does not include the true model and the 

number of parameters is less than the true model e.g. when there is 

unmodelled dynamics and/or nonlinear distortions in linear system 

identification, or too small a number of sine waves and/or nonperiodic 

deterministic disturbances in signal modelling. Overmodelling is described 

by too many parameters and it occurs when the considered model includes 

the true model [4]. Here, a study on the effectiveness of information criterion 

is warranted. 
This paper studies the effectiveness of Akaike information criterion 

(AIC) [6], corrected Akaike information criterion (AICc) [7], Bayesian 

information criterion (BIC) [8] and parameter magnitude-based information 

criterion (PMIC2), [9]. All these information criterions are compared by 

testing on four simulated dynamic models in the form of difference equations 

model. Linear and nonlinear autoregressive models with exogenous input 

(ARX and NARX) are used in this simulation [5]. The benefit of using 

simulated models is the presence of an opportunity to compare the final 

model directly with the true model. 
The next sections are as follows: Section 2 explains system 

identification; Section 3 lays out the information criterions; Section 4 

explains the simulated models; Section 5 provides results and discussion and 

lastly Section 6 concludes the paper along with recommendation of future 

works. 
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System Identification 
 

System identification is a pre-requisite to analysis of a dynamic system and 

design of an appropriate controller for improving its performance. The more 
accurate the mathematical model identified for a system, the more effective 

will be the controller designed for it [12]. Often, in order to deal with the 

bias-variance trade-off, the loss function or information criterion is 

augmented with a penalty term intended to guide the search for the “optimal” 

relationship penalizing undesired regressors, where regressors refer to 

possible terms and variables identified from model order and linearity 

specifications. Regularized estimation has been widely applied also in the 

context of system identification [13]. Several strategies have been proposed 

to avoid over-parameterization while utilizing all the data for training the 

model. The most popular strategy is to minimize a theoretically derived 

formula or criterion, which includes a goodness-of-fit index and a penalty 

factor for model complexity [14]. System identification can be framed as an 

optimization problem, as in Equation (1): 

 

𝜃̂  =  arg 
𝑚𝑖𝑛

𝜃
 𝐽𝐹  (θ, 𝐷𝑁)       (1) 

 

where 𝐽𝐹  (θ, 𝐷𝑁) measure how well the model described by parameter θ 
describes the measured data. A widely used variation of the estimation 

criterion includes a so-called ‘regularization term’ in the loss function to be 

minimized, as in Equation (2): 

 

𝜃̂  =  arg 
𝑚𝑖𝑛

𝜃
 𝐽𝐹  (θ, 𝐷𝑁)  +   𝐽𝑅 (θ, n)  (2) 

 

In this case, 𝜃̂ is estimated by trading-off the data fitting term 𝐽𝐹 (θ, 𝐷𝑁)and 

the regularization term 𝐽𝑅 (θ, n) which act as a penalty to penalize certain 

parameters vectors θ which describe ‘unlikely’ systems [11]. 
In today’s literature, various types of models are proposed for system 

modelling such as linear autoregressive with exogenous input (ARX) model 

and nonlinear autoregressive with exogenous input (NARX) model [5]. 
 

Information Criterion 
 

Model complexity selection is the sub-problem of model selection [15]. 

Parsimony, working hypotheses, and strength of evidence are three principles 

that regulate the ability to make inferences [16]. To overcome this, many 

information criterions were developed such as AIC, AICc, BIC and PMIC2. 

Estimation of the Kullback-Leibler information is the key to deriving the 
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AIC, which was the first model selection criterion to gain widespread 

acceptance [17]. AIC is written as in Equation (3): 
 

𝐴𝐼𝐶 = 𝑛 𝑙𝑛 
𝑅𝑆𝑆

𝑛
 +  2𝑝     (3) 

 

where  is the number of observations, 𝑅𝑆𝑆 is the residual sum of square, 

while 𝑅𝑆𝑆/𝑛 is the maximized value of the likelihood function for the 

estimated model and 𝑝 is the number of parameters in the statistical model 

[6]. 𝑅𝑆𝑆 can be defined as in Equation (4): 

 

𝑅𝑆𝑆 = ∑ 𝜀2(𝑡) =𝑁
𝑡=𝑘 ∑ (𝑦(𝑡) − 𝑦̂(𝑡))2𝑁

𝑡=𝑘          (4) 

 
where 𝜀(𝑡) is the residual; 𝑦̂(𝑡) and 𝑦(𝑡) are the k-step-ahead predicted 

output and actual output value at time t, respectively; and N is the number of 

data. The k-step-ahead prediction is used when the value of k depends on the 

output’s smallest lag order in the selected model structure, which in turn 

depends on the variables selected by the search method. 
Although AIC has been proven to be widely applicable, it can have 

serious deficiencies. Indeed, AIC was designed as an approximately unbiased 

estimator of the expected Kullback-Leibler divergence between the 

generating model and the fitted approximating model under the assumption 

that the true model is correctly specified or overfitted [18]. When the sample 

size is small or when the number of fitted parameters is a moderate to large 

fraction of the sample size, AIC becomes a strongly negatively biased 

estimate of the Kullback-Leibler divergence and leads to the choice of 

overparameterized models [15]. 
From [7], improvement has been made to AIC called corrected Akaike 

information criterion (AICc). Different approaches have been made to 

improve AIC by correcting its penalty term. One such approach is to 

asymptotically evaluate the penalty term as precisely as possible to provide 

better estimates of the model order [17]. AICc can be written as in Equation 

(5): 

  

𝐴𝐼𝐶𝑐 =  𝑛 𝑙𝑛 
𝑅𝑆𝑆

𝑛
 +  

2𝑘(𝑘+1)

𝑛−𝑘−1
     (5) 

 

Example of another widely used criterion is BIC which is based, 

respectively, on Bayesian and coding theory. The BIC is a likelihood 

criterion penalized by the model complexity. The penalty in BIC for 

additional parameters is known to be stronger than that of the AIC. The BIC 

is an asymptotic result derived under the assumptions that the data 

distribution is in the exponential family [8]. BIC is defined as in Equation 

(6): 
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𝐵𝐼𝐶 = 𝑛 ln 
𝑅𝑆𝑆

𝑛
 +  k  ln(𝑛)      (6) 

 

The PMIC2 is developed from the approach of using parameter 

magnitude information in information criterion [10, 11]. The bias term or 

known as penalty function are based on the magnitude of the parameters 

themselves, considering models with terms/variables with small parameter 

values to be discarded in the selection. It is written as in Equation (7): 
 

𝑃𝑀𝐼𝐶2 = ∑ (𝑦(𝑡) − 𝑦̂(𝑡))2 + ∑
1

𝜃𝑗
𝑗𝑛      (7) 

 

where, 𝜃𝑗 is the magnitude of parameter in the model and j is the number of 

parameter. 
 

Simulation Setup 
 

In this simulation, three ARX models and a NARX model are simulated 

using computer simulation software MATLAB. All models are denoted as 

Model 1, Model 2, Model 3 and Model 4 and each model is further classified 

as having d.c. level and not having d.c. level. The difference between the two 

are one having the output and input average subtracted (hence has no d.c. 

level) and the other not subtracted. The following are the models written as 

linear regression models, its specifications, number of correct regressors and 

number of possible regressors: 
 
Model 1:  

𝑦(𝑡) = 0.1𝑦(𝑡 − 2) + 0.3𝑢(𝑡 − 1) + 0.8𝑢(𝑡 − 3) + 𝑒(𝑡) 
Specification: =1, assumed maximum output order, 𝑛𝑦=3, maximum input 
order, 𝑛𝑢=3 
Number of correct regressor = 3 out of 7 (if d.c. level is assumed present) 

or 6 (if d.c. level is assumed absent) 
Number of possible model =127 (with d.c. level) or 63 (without d.c. level) 

 

Model 2: 
𝑦(𝑡) = 0.1𝑦(𝑡 − 1) + 0.4𝑦(𝑡 − 5) − 0.3𝑢(𝑡 − 3) + 0.5𝑢(𝑡 − 4) + 𝑒(𝑡) 

Specification: 𝑙=1, 𝑛𝑦=5, 𝑛𝑢=5 
Number of correct regressor = 4 out of 11 or 10 
Number of possible model =2047 or 1023 

 

Model 3: 
𝑦(𝑡) = 0.1𝑦(𝑡 − 2) + 0.3𝑦(𝑡 − 4) − 0.3𝑦(𝑡 − 7) + 0.2𝑢(𝑡 − 3) 

+0.3𝑢(𝑡 − 5) + 𝑒(𝑡) 
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Specification: 𝑙=1,𝑛𝑦=7, 𝑛𝑢=7 
Number of correct regressor = 5 out of 15 or 14 
Number of possible model = 32767 or 16383 

 

Model 4: 
𝑦(𝑡) = 0.3𝑦(𝑡 − 2) − 0.4𝑢(𝑡 − 2) + 0.1𝑦(𝑡 − 1)𝑦(𝑡 − 2) 

+0.1𝑦(𝑡 − 1)𝑢(𝑡 − 2) − 0.3𝑢(𝑡 − 2)𝑢(𝑡 − 2) + 𝑒(𝑡) 

Specification: 𝑙 =2, 𝑛𝑦=2, 𝑛𝑢=2 
Number of correct regressor = 5 out of 15 or 14 
Number of possible model = 32767 or 16383 

 

The input 𝑢(𝑡) is generated from a random uniform distribution in the 

interval [-1, 1] to represent white signal, while noise 𝑒(𝑡)is generated from a 

random uniform distribution [-0.01, 0.01] to represent white noise. Five 

hundred data points are generated for each model. All models are evaluated 

by AIC, AICc, BIC and PMIC2, respectively, in order to identify the 

assumed optimum model. 
 

Result and Discussion 
 

In this section, comparisons are made between AIC, AICc, BIC and PMIC2 

for all models based on their selected model. The selected models are based 

on the minimization of respective criterions. Tables 1 to 4 show the results. 

Models with d.c. level are denoted as Model 1a, Model 2a, Model 3a and 

Model 4a while models without d.c. level are denoted as Model 1b, Model 

2b, Model 3b and Model 4b. The simulated model is denoted as S.M. For 

brevity, the variables and terms are not included but numbered. 
 

Table 1: Results on Model 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 1a 
Regressor Number 

1 2 3 4 5 6 7 

S.M    0.1  0.3  0.8 

AIC, AICc, BIC   -0.02   0.1    

PMIC2   0.1  0.3  0.8 

Model 1b 
Regressor Number 

1 2 3 4 5 6 

S.M   0.1  0.3  0.8 

AIC, AICc, BIC   0.02    -0.02  

PMIC2  0.1  0.3  0.8 
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Table 2: Results on Model 2 
 

Model 2a 
Regressor Number 

1 2 3 4 5 6 7 8 9 10 11 

S.M   0.1    0.4   -0.3 0.5  

AIC, AICc, BIC -0.6  -0.06   0.3 0.01 0.01 -0.3   

PMIC2       0.4   -0.3 0.5  

 

 

           Table 3: Results on Model 3 

 

Model 3a 
Regressor Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

S.M    0.1  0.3   -0.3   0.2  0.3   

AIC, AICc, BIC  -0.2  0.7         0.02    

PMIC2      0.37   -0.31   0.2  0.32   

 

Model 3b 
Regressor Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S.M   0.1  0.3   -0.3   0.2  0.3   

AIC, AICc, BIC  -0.01 1.3 -0.01 0.1 -0.1 -0.4 -0.04  0.01 0.2   0.01 -0.4 

PMIC2     0.37   -0.31   0.2  0.32   

           

Table 4: Results on Model 4 

 

Model 4a 
Regressor Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

S.M    0.3  -0.4  0.1   0.1     -0.3 
AIC, AICc, BIC -1.0  0.14 0.1  0.01 0.1 -0.01    -0.1  0.01  

PMIC2   0.3  -0.4  0.1  0.1      -0.3 

 

Model 4b 
Regressor Number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

S.M   0.3  -0.4  0.1   0.1     -0.3 
AIC, AICc, BIC  0.2  0.2 0.01   0.14  0.06  -0.02   

PMIC2  0.39  0.16 0.04 0.1  0.1 0.04   0.07  -0.24 

 

Figure 1 shows the comparison of number of regressors selected 

between AIC, AICc, BIC and PMIC2. From the tables and figure, AIC, AICc 

and BIC showed the same outcome but PMIC2 performed differently. As can 

be seen, PMIC2 selected the same model as the simulated model in Model 1a 

Model 2b 
Regressor Number 

1 2 3 4 5 6 7 8 9 10 

S.M  0.1    0.4   -0.3 0.5  

AIC, AICc, BIC     -0.02   0.02  -0.3   

PMIC2     0.4   -0.3 0.5  
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and Model 1b but AIC, AICc and BIC selected too simple model. However, 

for Model 2 and Model 3, PMIC2 almost selected a model as the simulated 

model where only one out of all regressors for all models has not been 

selected. It means that PMIC2 selected a more parsimonious model than 

simulated model for model 2 and model 3 while AIC, AICc and BIC cannot 

select the correct model where either under-modelling or overmodelling 

occurred in the case of the ARX models. 

 

 
 

Figure 1: A comparison of regressor number selected between AIC, 
AICc, BIC and PMIC2 for all models 

 
Besides, at Model 4b, AIC, AICc and BIC selected a wrong model, 

however, the number of regressor was not too far different from the right 
number. This occurred when AIC, AICc and BIC selected a model with 6 
regressors out of 14 while simulated model has 5 regressors. Overmodelling 
occurred for these criterions in the case of Model 4a. PMIC2 almost able to 
select the right model on Model 4a with only one regressor different which is 

0.1𝑦(𝑡 − 1)𝑢(𝑡 − 1) instead of 0.1𝑦(𝑡 − 1)𝑢(𝑡 − 2). PMIC2 choose too 
complex model with 8 regressors out of 14 in the case of Model 4b. Among 
these 8, the true regressors were selected. Overall, PMIC2 capability in 
selecting the correct model can be considered much better than AIC, AICc 
and BIC. 

 

Conclusion 

 

From this simulation, PMIC2 proved that it can select better models than 

AIC, AICc and BIC in order to choose the correct linear model (ARX 

model). However, in simulation of nonlinear model (NARX model), PMIC2 

almost picked the right model on Model 4a but overmodelling occurred when 

selecting Model 4b, a NARX model assuming no d.c. level. It is noted that 

although these two models are the same, they constitute different data (due to 

the step at which the averages were subtracted) causing information criterions 
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to behave differently. More rigorous analysis could be made to identify such 

weakness and therefore improve the capability of information criterions. 
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