UNIVERSITI TEKNOLOGI MARA

CHARACTERISTICS OF CELLULOSE ACETATE-LITHIUM SALTS COMPLEXES PLASTICIZED WITH NON CARBONATE PLASTICIZER BASED POLYMER ELECTROLYTES

SITI MASYITAH BINTI MOHD RAZALLI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

February 2017

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	¥. •	Siti Masyitah Binti Mohd Razalli	
Student I.D. No.	ें क	2012731817	
Programme	₩ . •	Master of Science (AS760)	
Faculty)∰. 	Applied Sciences	
Thesis Title	*	Characteristics of Cellulose Acetate-Lithium	
		Salts Complexes Plasticized With Non	
		Carbonate Plasticizer Based Polymer	
		Electrolytes.	
		Δ	
Signature of Student		Luz].	

Date

February 2017

÷.

ABSTRACT

In this study, cellulose acetate (CA), lithium bis(triflouromethanesulfonyl)imide (LiTFSI or lithium imide), lithium triflouromethanesulfonate (LiCF₃SO₃, LiTf or lithium triflate) and diethylene glycol dibutyl ether (BDG) was used in the preparation of solid polymer electrolytes (SPEs) and gel polymer electrolytes (GPEs). All the SPEs and GPEs samples were prepared by solution cast technique. The conductivity of the samples were characterized by the impedance spectroscopy in the frequency range between 1Hz until 1MHz. Highest ionic conductivity of SPE containing 25 wt.% Lithium Imide in CA+ Lithium Imide and 25 wt.% Lithium Triflate in CA+Lithium Triflate was 5.63x10⁻⁴ S cm⁻¹ and 1.18x10⁻⁴ S cm⁻¹ respectively at room temperature. Further enhancement of ionic conductivity obtained with addition of plasticizer into SPE was 2.88x10⁻³ S cm⁻¹ and 1.50x10⁻³ S cm⁻¹ at the composition of 68:22:10 by wt.% for CA+Lithium Imide+BDG and CA+Lithium Triflate+BDG respectively at room temperature. The temperature dependence conductivity shows that the conductivity of SPE and GPE was obeyed Arrhenius rule. The modulus formalism studies show that the unplasticized and plasticized samples behave as an ionic conductor. FTIR spectroscopy justify the interactions between polymer and salt primarily for both systems due to the C=O of CA and Li^+ of salt. The shifting of the carbonyl peak C=O of CA at 1737 cm⁻¹ to the lower wavenumber indicates coordination takes place between lithium cation and C=O to form $Li^+ \rightarrow O=C$ interaction. FTIR studies also confirm the addition of plasticizer just penetrated in between polymeric chain and create more free volume by reducing the polymer chain cross linking without perturbing the complexation of polymer-salt. XRD analysis confirmed the formation of polymer-salt complexes for both system with the decreasing of peak intensity at $2\theta = 13.6^{\circ}$, 17.9° and 23.58° for CA+Lithium Imide and CA+Lithium Triflate upon the addition of salt content. Besides that, XRD spectra analysis demonstrated the incorporation of plasticizer has reduced the crystallinity of both systems promotes to ion migration easily hence lead to the ionic conductivity enhancement. The plasticized sample CA+25wt.% Lithium Imide+10wt.%BDG ($t_i = 1.00$) and CA+25wt.% Lithium Triflate+10wt.%BDG ($t_i =$ 0.97) for both system are found to be more ionic compared to the unplasticized sample CA+25wt.% Lithium Imide ($t_i = 0.75$) and CA+25wt.% Lithium Triflate (t_i =0.6) for both system.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim.

Alhamdulillah. In the name of Allah The Most Beneficent and The Most Merciful, I would like to praise and express my highest gratitude to Allah S.W.T for endless blessing, giving me an opportunity to study at Universiti Teknologi MARA and strength to overcome all the toughness throughout the years in completing my research project.

First, I would like to say a million thanks and appreciation to my respected supervisor and co-supervisor, ASSOC. PROF. DR. AB MALIK MARWAN BIN ALI, PROF. DR. MUHD ZU AZHAN BIN YAHYA and ASSOC. PROF. DR. ING OSKAR HASDINOR BIN HASSAN for all their guidance, valuable contribution, aspiring assistance, patience, motivation and advices in this MSc research work that lead to the success of this thesis completion. Moreover, I have learnt so much during the process of completing this research with their wholeheartedly guidance on my worries and problems.

As for my loving family, mama (SITI AWAN BINTI MANSOR), abah (MOHD RAZALLI BIN MOHD), my beloved siblings (SITI SYAFAWATI, MUHAMMAD SYAMIR, SITI SYAFINAS, MOHD SYAFIQ), who supports me in whatever situation during this completion of my MSc study, thank you

A tremendous and deep thanks to my beloved husband MUHAMMAD FADHLI BIN BUKHORI, my hero DARIS ZAWRY BIN MUHAMMAD FADHLI who always loving me, always be with me and gave me a lot of strength to complete this thesis, thank you very much.

To *i*-MADE lab members, Dr.Fariz, Dr.Wafi, Sahak, Shereen, Ijat Linda, Maziidah, Emy Hamizah, Syida , Diana Ramly, Zafirah, Fairoz, Wan, Diana Hashim, Khuzaimah, Fad, Kamil, Abu, Aidil, Syafikah, Atikah, Atikah Md Jani, Haikal, Anum,Hazri, Hafiz and newcomers juniors who always helping and support me during the process of complementing this research, a very deep thanks goes to all of you. Not to forget, thanks to Puan Cik Masni, lecturers and research assistants for their cooperation's given.

I would like to express my gratefulness to Ministry of Science, MYBRAIN scholarship awarded and mostly to UiTM MALAYSIA for being a platform for me to explore the world of PHYSICS till I got my Diploma, BSc and now MSc. Last but not least I had never success in completing this MSc research without all of you. Thank you.

TABLE OF CONTENTS

			Page
CONFIRMATION BY PANEL OF EXAMINER			ii
AUTHOR'S DECLARATION			iii
ABSTRACT			iv
ACKNOWLEDGEMENT			Ŷ
ТАВ	LE OF (CONTENTS	vi
LIST	OF TA	BLES .	ix
LIST	OF FIC	GURES	xi
LIST	OF SYI	MBOLS	xvi
LIST OF ABBREVIATIONS			xviii
СНА	PTER C	ONE: INTRODUCTION	
1.1	Backg	round Study	1
1.2	Proble	3	
1.3	Object	4	
1.4	· Scope	4	
1.5	Signifi	5	
1.6	Thesis	5	
CHA	PTER T	TWO: LITERATURE REVIEW	
2.1	Introd	7	
2.2	Polymer Electrolytes		7
	2.2.1	Solid Polymer Electrolytes	8
	2.2.2	Gel Polymer Electrolytes	10
2.3	Electrical Properties Of Polymer Electrolytes		11
	2.3.1	Impedances Studies	11
2.4	Ionic	Conduction Of Polymer Electrolytes	15