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In this paper, the researcher proposes a simple mathematical model 
consisting of mutualistic interactions among two-species with constant 
harvesting. Mutualism is one kind of interaction that ends up being a 
win-win situation for both species involved. The interacting species 
benefit from this interaction and ultimately are better adapted for 
continuous existence. The harvesting function is implemented to 
describe the rate of removal of the species. This paper aims to 
investigate the global stability of the unique positive equilibrium point of 
the model. The global stability of the model is studied by using 
Lyapunov function method. By constructing a suitable Lyapunov 
function, it has been proven that the unique positive equilibrium point is 
globally asymptotically stable in a nonlinear system. Finally, numerical 
simulation is shown to illustrate theoretical results and to simulate the 
trajectories around the stable equilibrium point. From the numerical 
analysis, it is observed that both the species persist. 
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1. Introduction
Mutualism is an interaction between two species that benefits both species [1],[2]. Some 

examples of two-species mutualism include zebra and wildebeest [3], fungi and algae [4], yucca 
moths and yucca plants [5] and damselfish and sea anemone [6]. Mutualism can be categorised into 
four types; seed dispersal, pollination, digestive and protection [7]. In general, mutualism may be 
facultative or obligate [8]. In a facultative mutualism, each species can survive independently, but 
both benefit when they are found together. Zebra and wildebeest, damselfish and sea anemone are 
some examples of facultative mutualism. In an obligate mutualism, both species require each other 
to survive. Fungi and algae, yucca moths and yucca plants are some examples of obligate mutualism. 

Global stability is one of the important issues in a mutualism system. Some biologists believe 
that local asymptotically stable equilibrium point is globally asymptotically stable in an ecological 
system [9]. A general method to prove global stability in a mutualism system is by constructing a 
Lyapunov function. The other methods that previous researchers usually employ to prove global 
stability are Dulac Criterion and limit cycle stability analysis. 

The authors in [10] and [11] constructed two different forms of Lyapunov functions to prove 
global stability in the same basic model of mutualism. Georgescu et al. in [12] proved the global 
stability of three systems of mutualism via the method of Lyapunov function. Yang et al. [13] studied 
global stability in a discrete mutualism model using the iterative method. There are adequate 
conditions to verify the model’s global stability. Lei [14] studied the global stability of the stage-
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structured commensalism system by using the Lyapunov method. The author gives an example to 
illustrate the theoretical discussion.  

The removal of some species of the population from their habitat is known as harvesting. 
Harvest management is used to control the increasing population and to meet the demands of the 
community for animal damage control, recreation or commercial harvesting [15]. Harvesting often 
decreases the equilibrium point of the population level since it increases the mortality rate [16]. 

León in [17] studied the global stability of mutualism system with proportional harvesting via 
the method of Lyapunov function. More than one Lyapunov function was constructed by the author 
to prove the global stability of the same system. The author in [3] developed a Lyapunov function to 
prove that the unique positive equilibrium point is globally asymptotically stable in mutualism model 
with proportional harvesting. The model is different from a model appearing in [17]. The author 
illustrates the results by an example. A fractional mutualism model with harvesting has been 
investigated by Supajaidee and Moonchai [18]. The authors use the Lyapunov function approach to 
achieve sufficient conditions for global stability of the coexistence equilibrium point. 

In this paper, we construct an appropriate Lyapunov function to prove the global stability of 
the unique positive equilibrium point of a mutualism model with constant harvesting and illustrating 
our results with a numerical example. 
 
 
2. Lyapunov’s Second Method 

Lyapunov’s second method or known as direct method applies an energy-like function called 
the Lyapunov function to analyse the behavior of dynamical systems analytically [19]. This method 
is called a direct method since there is no need for understanding of the solution of the differential 
equation system.  Lyapunov’s second method enables the analysis to extend beyond a specific area 
close to the equilibrium point (global analysis). The basic idea of this stability verification technique 
is to look for an aggregated summarizing function that continues to decrease to a minimum as the 
system changes. The following Definition 1 and Theorem 1 can be obtained from [20]. 

 

Definition 1:  Suppose that ),( 00 yx  is an equilibrium point of a given nonlinear system 
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A function V(x,y)  defined on a region   of the state space and containing ),( 00 yx  is a Lyapunov 

function if it satisfies the following three requirements: 
 

1. ),( yxV  is continuous and has continuous first partial derivatives. 

2. ),( yxV  is positive definite. 
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Theorem 1. If there exists a Lyapunov function ),( yxV , then the equilibrium point ),( 00 yx  is stable.  

If, furthermore, the function ),( yxV  is strictly negative for every point then the stability is asymptotic. 

 
 
3. Mathematical Model 

We consider the constant harvesting model of mutualism as follows 
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where 
xK
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b =  and 
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e = . The symbols 𝑥 and 𝑦 denote the population size of the first species 

and the second species respectively, 𝑟 and 𝑠 are the intrinsic growth rates, 𝐾𝑥 and 𝐾𝑦 are the carrying 

capacities, ⍺ and β measure the mutualism effect of 𝑦 on 𝑥 and 𝑥 on 𝑦 respectively. The terms xh  

and yh  in model (1) are the harvesting rates of the first and second species respectively and 

assumed to be positive. All the parameters are positive constants. 
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= .  Since )(xF  is concave upward and 

)(yG  is concave to the right, we know that )( cxF  is the minimum value as well as )( cyG . If 

cc yxF )(  and cc xyG )( , this implies that there are either two or three or four intersections 

between the curves )(xF  and )(yG  in the positive quadrant.  This means that there exist either two 

or three or four positive equilibrium points in the positive quadrant for model (1).  Under conditions 

cc yxF )(  and cc xyG )( , one of the equilibrium points in the positive quadrant is qualitatively 

stable.  These conditions are only sufficient conditions and not necessary conditions to get one stable 
equilibrium point in positive quadrant. 

 
 

4. Global Stability 
This section aims to study the global stability of the unique positive equilibrium point 

),( *** yxE =  in system (1) by using an appropriate Lyapunov function when the conditions 

cc yxF )(  and cc xyG )(  are satisfied. In order to prove the global stability of the equilibrium point 

),( *** yxE =  of model (1), we analyze the associated linearization model with perturbation u  and 

v .  Let *xxu −=  and 
*yyv −=  and substitute into system (1) to get 
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We get the linearized model after simplifying and neglecting the product terms 
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 The corresponding characteristic equation is obtained from 
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This function is definitely continuous with continuous first partial derivatives.  Next, we’d like 

to verify whether the function ),( vuV  is positive or negative definite.  By completing the square we 

get 
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Function ),( vuV  is positive definite if, and only if 0A  and 04 2 −BAC , and is negative definite 

if, and only if 0A  and 04 2 −BAC .  From (5) and (8), it is clear that 0A  and 0D .  Then  
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therefore 04 2 −BAC . Hence, the function ),( vuV  is positive definite. The chosen function ),( vuV  

meets the first two criteria of a Lyapunov function. 
 
For the final requirement, referring to the linearized system (2), we have    
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Substituting the values of BA, and C  from (5), (6) and (7) in (9) we get 
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which is clearly negative definite.  So ),( vuV  is a Lyapunov function for the linear system (2). 

 

Next we show that ),( vuV  is also a Lyapunov function for the nonlinear system (1). 
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Thus, ),( vuV  is a positive definite function with the property that 21 F
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definite.  So ),( vuV  is a Lyapunov function for the nonlinear system (1).  Therefore, the unique 

positive equilibrium point ),( *** yxE =  of model (1) is globally asymptotically stable. 

 
5. Numerical Simulation 

We present the following system of wildebeest and zebra without the involvement of lion as 
suggested in [21] with the addition of the constant harvesting terms: 
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where x  and y  are population size of wildebeest and zebra respectively (both measured in 

thousands).  In this model, harvesting refers to the process of cropping the species, i.e. removing 

the species to a new location to avoid overcrowding. The harvesting rates 8.0=xh  and 9.0=yh  

are chosen based on the feasible region as in Figure 1. 
 

 
     Figure 1. Feasible region for xh  and yh  satisfying cc yxF )(  and cc xyG )(  

 

Model (15) compared with model (1), we have 405.0=r , 03375.0=b , 015.0= , 

34.0=s , 02833.0=e , 020.0= , 8.0=xh  and 9.0=yh .   

With these parameters, the conditions 6360.50911.5)( =−= cc yxF  and 

8686.40313.1)( =−= cc xyG  are satisfied.  Model (15) has four equilibrium points in the positive 

quadrant; )7997.1 ,5539.10(1 =E , )0403.3 ,1083.2(2 =E , )9309.9 ,6001.1(3 =E  and 

)0577.27 ,9948.22(4 =E . The stability of each equilibrium points is given in Table 1. 

 
Table 1. Equilibrium Points of Model (15) and Their Stabilities 

 
Equilibrium Points Eigenvalues  Stability 

)7997.1 ,5539.10(1 =E  28812.0− , 45682.0  Unstable Saddle Point 

)0403.3 ,1083.2(2 =E  32499.0 , 19318.0  Unstable Source 

)9309.9 ,6001.1(3 =E  45336.0 , 19815.0−  Unstable Saddle Point 

)0577.27 ,9948.22(4 =E  16938.1− , 30527.0−  Asymptotically Stable Sink 
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We consider the equilibrium point )0577.27 ,9948.22(*
4 == EE  where this equilibrium 

point is asymptotically stable.  In Figure 2, the equilibrium point )0577.27 ,9948.22( is a stable sink. 

This implies that close solution trajectories tend without oscillation to the equilibrium point. The 
population dynamics of zebra and wildebeest can be independently analyzed. From Figure 3 and 
Figure 4, both the zebra and the wildebeest populations converge in finite time to their equilibrium 

point 9948.22* =x  and 0577.27* =y respectively.  

 
 
 

 
                  Figure 2. Phase portrait of ))(),(( tytx  

 

                
                  Figure 3. Trajectory of )(tx at 8.0=xh  and 26)0( =x  
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              Figure 4. Trajectory of )(ty at 9.0=yh  and 28)0( =y  

 
 

 
6. Conclusion 

This study focuses on the global stability of the two-species mutualism model with a constant 
rate of harvesting function. The global stability of the unique positive equilibrium point of the model 
is proven by constructing an appropriate Lyapunov function. From the numerical analysis, it is 
observed that both the species persist. As seen from the Figure 2 – Figure 4, both the wildebeest 

and zebra populations tend toward the equilibrium point )0577.27 ,9948.22( .  
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