UNIVERSITY TEKNOLOGI MARA CAWANGAN PULAU PINANG

AGEING OF PMMA:TiO2 THIN FILM INSULATION APPLICATION

VIVEA ZAFIRAH BINTI JULAIHI

Faculty of Electrical Engineering

Jan 2018

AUTHOR'S DECLARATION

I declare that the work in the thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the results if my own, unless otherwise indicated or acknowledge as reference work.

I, hereby acknowledge that I have been supplied with the Academic Rules and Regulations, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Vivea Zafirah Binti Julaihi
Student ID No	:	2014184601
Programme	:	Bachelor of Engineering (Hons)
		Electrical & Electronic
Faculty	:	Faculty of Electrical Engineering
Thesis Title	:	Ageing of PMMA:TiO2 Thin Film
		Insulation Application
Signature of Student	:	
Date	:	Jan 2018

ABSTRACT

A composite between poly (methyl methacrylate) (PMMA) with titanium dioxide (TiO₂) films were fabricated and characterized using sol-gel spin coating technique. The electrical and physical properties of (PMMA:TiO₂) nanocomposite thin films were investigated, to be used as an insulation in high voltage application. The goal of this study is to investigate the insulation properties of the PMMA:TiO2 nanocomposite thin film for high voltage (HV) applications by varying the ageing time of the solution. In this research, the experiments are conducted by varying the aging time of PMMA:TiO2 nanocomposite thin film from 1 to 5 hours. The purpose of varying the aging time is to observe the changes of AC and DC breakdown voltage, thickness and the surface of the insulation material. The PMMA:TiO₂ thin films were characterized by using AC and DC breakdown voltage, partisl discharge, surface profiler and atomic force microscopy (AFM). Results from electrical characterization showed that the insulation properties of DC breakdown voltage is higher than AC breakdown voltage. The higher breakdown voltage was at aging time of 3 hours that is 9 kV and 17kV respectively. It was also found that by varying the aging time of the PMMA:TiO₂ nanocomposite solution, the insulation performance of PMMA:TiO₂ thin film are affected the structural and electrical properties of the PMMA:TiO₂ nanocomposite thin film as an insulation in high voltage field.

ACKNOWLEDGEMENT

This work was supported by Faculty of Electrical Engineering UiTM (Permatang Pauh Pulau Pinang), Faculty of Electrical Engineering UiTM (Shah Alam Selangor) and Faculty of Applied Science UiTM (Shah Alam Selangor).

I would like to extend my gratitude and my sincere thanks to my honorable supervisor **Dr Lyly Nyl Ismail**, Faculty of Electrical Engineering. I sincerely thank for her exemplary guidance and encouragement in every aspects for my final year project. Her trust and support is inspiring especially in making right decisions and I am glad to work under his supervision.

I am very much thankful to assistance lecturer **Mr Sarih** from Faculty of Electrical Engineering UiTM (Permatang Pauh Pulau Pinang), **Mr Sallehuddin** from Faculty of Electrical Engineering UiTM (Shah Alam Selangor) and **Miss Adillah** from Faculty of Applied Science UiTM (Shah Alam Selangor).for providing us with best facilities in the department and his timely suggestions. I extend my sincere thanks to all faculty and non-faculty members of the Department for their help directly or indirectly, during the course of my thesis work.

Last but not least, I would like to thank my parents and friends, who taught me the value of hard work and inspired me a lot. They rendered me enormous support being apart during the whole tenure of my stay in UiTM (Permatang Pauh Pulau Pinang).

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	AUTHOR'S DECLARATION	i
	ABSTRACT	ii
	ACKNOWLEDGEMENT	iii
	TABLE OF CONTENTS	iv
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
	LIST OD SYMBOLS	Х
	LIST OF ABBREVIZTIONS	xi

1	INTR	ODUCTION	1
	1.1	Background of Study	1
	1.2	Problem Statement	2
	1.3	Research Objectives	3
	1.4	Scope of Study	3
	1.5	Significance of Research	4
	1.6	Thesis Organization	4
2	HIGH	VOLTAGE INSULATING MATERIALS	6
	2.1	Introduction	6
	2.2	High Voltage Insulation	6
		2.2.1 Solid Insulation	7
		2.2.2 Liquid Insulation	18
		2.2.3 Gas Insulation	18
	2.3	Polymeric Nanocomposite Insulation	19

		2.3.1 Poly (Methyl Methacrylate) (PMMA)	20
		2.3.2 Titanium Dioxide (TiO ₂)	21
	2.4	Summary	21
3	MET	THODOLOGY	22
	3.1	Introduction	22
	3.2	FABRICATION OF PMMA:TIO2	24
	NAN	IOCOMPOSITE THIN FILMS	
		3.2.1 Preparation of PMMA:TiO2 Nanocomposite	24
		3.2.2 Deposition of PMMA:TiO2 Nanocomposite	27
	Thin	Film	
	3.3	HIGH VOLTAGE TESTING OF PMMA:TiO2	27
	NAN	IOCOMPOSITE THIN FILMS	
		3.3.1 AC Breakdown Test	27
		3.3.2 DC Breakdown Test	30
	3.4	Structural Characteristic	31
		3.4.1 Surface Profiler	31
		3.4.2 Atomic Force Microscopy (AFM)	32
	3.5	Summary	34
4	RES	ULT AND DISCUSSION	35
	4.1	Introduction	35
	4.2	Structural Properties	35
		4.2.1 Atomic Force Microscopy (AFM)	36
	4.3	Electrical Properties	37
		4.3.1 AC and DC Breakdown Voltage	37
		4.3.2 DC Breakdown Voltage under	39
	degra	adation	
		4.3.3 AC Breakdown Strength	39
		4.3.4 Partial Discharge (PD)	40

CON	ICLUSION	
5.1	Conclusion	
5.2	Future Work	

5