UNIVERSITI TEKNOLOGI MARA

PHYSICAL, MECHANICAL AND MORPHOLOGICAL STUDIES OF UNSATURATED POLYESTER MATRIX AND KENAF SHORT FIBRES IN COMPOSITE SYSTEM

MUHAMMAD MUSTAKIM MOHD GHAZTAR

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

August 2017

ABSTRACT

The fibres physical, mechanical and microstructural properties are crucial elements in the fabrication of biocomposites. The research was conducted based on lack of attention in materials preparation and fabrication processes especially, using short natural fibres and thermosetting matrix system. Thus, the objective of this research is to optimise the materials preparation and fabrication processes in an effort to identify the cause of biocomposite strength inconsistency. The research was carried out by fabricating the samples into two (2) types of fibres categories and fibres loadings and tested to determine its physical, mechanical and morphological properties. The samples were analysed microscopically before, and after the test to identify the cause of fibres-matrix de-bonding. The results showed that the density and hydrophilicity properties of the composite increases as the fibres content increases, however, the hardness properties decrease as the matrix content decreases. In addition, the treated samples gave the highest tensile (44.28 N/mm²) and flexural (49.57 N/mm²) strength, especially low A-fibres loading samples (46.89 N/mm²). Moreover, in morphological analysis of samples fractured surface, showed identical fibres pre-damage imparted to the fibres pull-out. The application of chemical treatments coalition contributes well in the improvement of physical and mechanical properties of the composite. But, due to the less treated fibres surface contact, the damaged fibres retained its shapes. It reduced fibres-matrix interaction and creates stress discontinuity during testing process. As a conclusion, by better understanding the natural based composite behaviour, the suitable optimisation methods can be implemented. In the end, the cause of natural based composite strength inconsistency can be resolved in future.

ACKNOWLEDGEMENT

In the Name of Allah, Most Gracious, Most Merciful

Alhamdulillah, grateful to *Allah S.W.T* with His grace I manage to complete this thesis to fulfil the requirements of Master of Science (Polymer Technology). In this opportunity, I would like to record my infinite thanks to those who helped me directly or indirectly in the completion of this thesis.

My special gratitude goes to my supervisor, Dr Ahmad Zafir Romli who had kindly assisted me to produce this valuable thesis. His advice, ideas, encouragement and guidance has enabled me to complete this thesis on time and with quality results. All his efforts in the completion of this thesis are highly appreciated.

Special thanks also goes to all my family members especially my father, Mohd Ghaztar Hj Mohd Yusuff, my mother, Asmah Abdul Kadir, and my lovely wife, Nik Noor Idayu Nik Ibrahim for giving me the support, unfailing encouragement and dua' for me to continue my studies in this field.

My gratitude also goes to all lecturers and staff of Faculty of Applied Sciences and Polymer Composites Research and Technology Laboratory (PoCResT), Institute of Sciences. In an effort for them in sharing knowledge and providing calibrated facilities; in order for me to produce an attribute works such this.

Finally, may Allah S.W.T reward His kindness and blessings to all those who have helped me. I will use these knowledges to be a better person that can give a big contribution to the university and my beloved country.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	х
LIST OF FIGURES	xii
LIST OF PLATES	XV
LIST OF SYMBOLS	XX
LIST OF ABBREVIATIONS	xxi

CHAPTER ONE: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statements	2
1.3	Research Objectives	5
1.4	Significances of the Study	5
1.5	Scope and Limitations	7
1.6	Summary	8

CHAPTER TWO: LITERATURE REVIEW

2.1	Introd	Introduction	
2.2	Fundamentals of Composite		9
	2.2.1	Natural Fibres	11
	2.2.2	Kenaf Natural Fibres	12
	2.2.3	Unsaturated Polyester Matrix (UP)	15
	2.2.4	Methyl Ethyl Ketone Peroxide Hardener (MEKP)	16
2.3	Chemical Treatments on Natural Fibres		16
	2.3.1	Sodium Hydroxide (NaOH) Treatment	17

	2.3.2	Silane Coupling Agent (Sil)	19	
2.4	Natural Fibres in Composites			
	2.4.1	Natural Fibres Aspect Ratio and Length	23	
	2.4.2	Mechanical Damages in Natural Fibres Morphology	24	
	2.4.3	Biocomposite Fabrication Methods	26	
	2.4.4	Dispersion of Natural Fibres	27	
2.5	Physical and Mechanical Properties			
	2.5.1	Density	28	
	2.5.2	Voids Content	29	
	2.5.3	Water Absorption	29	
	2.5.4	Hardness	32	
	2.5.5	Tensile	33	
	2.5.6	Flexural	34	
2.6	Sampl	e Morphology	37	
	2.6.1	Optical Microscope (OM)	37	
	2.6.2	Voids	38	
	2.6.3	Fibre-Matrix Failure	41	
СНА	PTER T	HREE: METHODOLOGY		
3.1	Introdu	oduction		
3.2	Materi	als	45	
3.3	Chemi	ical Treatments on Kenaf Fibres	45	
3.4	Drying	g Process	47	
3.5	Pulver	isation Process	49	
3.6	Charao	cterisation of Kenaf Fibres Morphology	52	
3,7	Comp	Composite Fabrication		
	3.7.1	Sample Formulations	54	
	3.7.2	Sample Preparations	56	
		3.7.2.1 Determination of Gel Time	56	
		3.7.2.2 Selection of Fabrication Process	57	
		3.7.2.3 Ideal Fabrication Process	60	
3.8	Physical Properties			
	3.8.1	Density	67	