THE APPLICATION OF FINITE VOLUME METHODS TO STUDY THE NATURAL CONVECTION PHENOMENA IN A 2D RECTANGULAR CAVITY

BY

YUSLI YAAKOB CHIANG EE PIN PERIDAH BAHARI

DEC 2007

ACKNOWLEDGEMENTS

"In the Name of ALLAH, The Most Beneficent, The Most Merciful"

Praise is exclusively to Allah, the Lord of the universe and peace is upon the Master of the Messengers, his family and companions.

The authors would like to acknowledge the following individuals:

- Yg Bhg. Prof. Ir. Dr. Mohamad Nor Berhan (Pengarah Kampus, UiTM Pulau Pinang)
- Dr. Mohamad Abdullah Hemdi
 (Timbalan Pengarah (HEA), UiTM Pulau Pinang)
- All Faculty of Mechanical Engineering staffs for their support, whether directly or indirectly.

Finally, appreciations are to my family members for their understanding and patience without which the efforts are impossible.

TABLE OF CONTENTS

		Ū
ACK	KNOWLEDGEMENTS	i
ТАВ	ii	
LIST	iv	
LIST	v	
LIST	vi	
ABS	STRACT	viii
СНА	APTER ONE : INTRODUCTION	
1.0	Introduction	1
1.1	Problem Statement	3
1.2	Objective	3
1.3	Scope of Work	3
1.4	Significant of the Study	4
СНА	APTER TWO : LITERATURE REVIEW	
2.0	Introduction	5
2.1	The Review	5
СНА	APTER THREE : THEORETICAL BACKGROUND	
3.0	Introduction	9
3.1	Basic Governing Differential Equations	9
3.2	Fully Navier-Stokes Equations without Transformation	14
3.3	Derivation of the dimensionless form of the Governing	16
	Equations	
	3.3.1 Dimensionless Continuity Equation	16
	3.3.2 Dimensionless Momentum Equation	17
	3.3.3 Dimensionless Energy Equation	17

- 3.4 Stream-Function Vorticity Formulation 18 3.4.1 Stream-Function Equation 18 3.4.2 Vorticity Equation 19 20
- The calculation of Heat Transfer and Nusselt Number 3.5

CHAPTER FOUR : METHODOLOGY

4.0	Introduction	22
4.1	Discretization Concept	22
4.2	Finite Volume Method	23
4.3	Convection and Diffusion	25
4.4	The Stream-Function Vorticity Solution	27
	4.4.1 Solution for Stream-Function Equations	27
	4.4.2 Solution for Vorticity and Energy Equations	28
4.5	Boundary Conditions	32
4.6	Solution of Discretization Equation	35
	4.6.1 Tri-Diagonal Matrix Algorithm	35
	4.6.2 A Line by Line Method	37
4.7	Grid Size and Geometry	38
4.8	Calculation of Nusselt Number	40
4.9	Computer Programming	41

CHAPTER FIVE : RESULT AND DISCUSSION

5.0	Introduction	43
5.1	Validation of Numerical Procedure	43
5.2	Analysis of Result for Constant Temperature	45

CHAPTER SIX : CONCLUSION AND RECOMMENDATIONS

6.0	Conclusion	54
6.1	Recommendation for Future Work	55
BIBLIOGRAPHY		57

ABSTRACT

The phenomenon of the steady natural convection inside the two-dimensional square enclosure which is horizontally heated is investigated numerically. The natural convection is assumed to occur when one of the sidewalls is heated and cooled at another wall while the top and bottom wall are remain adiabatic. The heated wall is assumed to have the uniform temperature which is higher than the cold sidewall temperature. The finite volume method is used to solve the governing equation based on stream-function-function formulation. The program has been validated by comparing the result of the constant temperature with the previous studies and revealed good agreements. The important parameters involved in this analysis are (1) Rayleigh number, the ratio of temperature difference and (2) Prandtl number, the media of fluids. The Nusselt number (Nu), representing the non-dimensional temperature gradient is the main consideration for the result output. The results are presented in the range of $10^3 \le \text{Ra} \le 10^6$ where laminar flow is expected. The numerical result of air Pr=0.71 and water Pr=7.0 are presented to find out the effect of Rayleigh numbers on the average Nusselt number along the hot wall and cold wall respectively. The result show the average Nusselt number varies accordingly along the hot wall and increase with the increased of Rayleigh numbers. The maximum value of average Nusselt number for all the values of the hot wall temperature variation occurs for Rayleigh number Ra=10⁶. In conclusion, the Finite Volume method is very much suitable for analyzing the heat transfer phenomenon inside a 2D cavity or rooms.

viii