UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF CAPACITANCE BASED RUBBER TREE LATEX SYSTEM FOR WHITE ROOT DISEASE DETECTION

AHMAD FAIZ BIN MOHD SAMPIAN

Thesis submitted in fulfilment of the requirement for the degree of Master of Science

Faculty of Electrical Engineering

July 2017

ABSTRACT

White root infection to rubber tree is a very common problem faced in rubber industry. Once the tree is infected, it will affect latex productivity and eventually died because of nutrient loss taken by the fungus. Detection method of this infection are usually done by expertise evaluation and a lab test which is not accessible to every rubber tree planters. Thus, due to this fact, this work is done to investigate the detection of white root infection to a rubber tree via rubber latex by measuring its capacitance value with prototype console unit (PCU) developed. Based on the statistical analysis done to 100 normally distributed measurements for healthy and infected samples, there are discrimination between both samples. Discrimination can be seen visually in comparison between error bars and this finding is enforced with the value of paired samples test (p-value) equal to 0.000. An optimized classification model by using ANN is developed and neuron with hidden layer size of 2 is chosen as the best based on accuracy of 82.5% and 5 numbers of connections with threshold of 0.5. Completing this research, a visual interaction system based on optimized model is developed and tested. Based on the 30 samples for each group tested during validation, the system perform considerably good with 78.34% accuracy

ACKNOWLEDGMENT

In the name of Allah, the Most Gracious, the Most Merciful. First and foremost, I am grateful to Allah S.W.T for the knowledge and idea bestowed upon me, the drive, good health and peace of mind to finish this journey. This thesis would not be completed without help of many individuals which I am indebted with.

This work would not be completed without consistent guidance of Assoc. Prof. Dr Hadzli Hashim that always inspires me with encouragement and advices during the process of completing this research. There is no word that can describe how thankful I am for his supervision. I would like to dedicate my appreciation to Dr Mahanijah Md Kamal for her help as well.

I would like to express my gratitude to my family members for their encouragement especially my beloved parents, Mohd Sampian bin Hussian and Padzilah bt Mohd Said for their unconditional support to complete this thesis. Not to forget, gratefulness for my charming wife Siti Hajar binti Abdul Raouf for her assist physically and mentally.

I am hugely appreciative to Rubber Research Institute of Malaysia for the assist, resources given, expertise advice, and facilities provided while working on this topic. Special gratitude is given to Mr. Amran Saari for his huge assistance in this research. Finally, I am glad to be blessed with magnificent friends and colleagues which support me in many possible ways that able me to complete this thesis.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	iii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xii
LIST OF ABBREVIATION	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Background Studies	1
1.2 Problem Statement	3
1.3 Research Objectives	4
1.4 Scope And Limitation	5
1.5 Significance Of Studies	5
1.6 Thesis Organization	6
CHAPTER TWO: LITERATURE REVIEW	8
2.1 Introduction	8
2.2 History Of Rubber Technology	9
2.3 Rubber Industry Potential	9
2.4 Research In Rubber Industries	10
2.5 Research Related To Upstream	11
2.6 White Root Disease	12
2.7 White Root Disease Detection	13
2.8 White Root Disease Treatment	14
2.9 Capacitance And Dielectric Properties Measurement	15

2.10 Statistical Analysis	17
2.11 Artificial Neural Network	18
2.12 Graphical User Interface	19
2.13 Summary	20
CHARTER THREE. METHODOLOCY	ঞা
2.1. Introduction	21
3.1 Introduction	21
3.2 Process Of Research	21
3.4 Detection Phase	22
3.4 Detection Flase	27
3.4.2 Canacitance to Voltage Converter Circuit Development	27
3.4.2 Capacitance to Voltage Converter Circuit Development	27
3.4.4 Digital Panel Motor Display (PM428)	29
3.4.5 Prototyme of Console Unit	29
3.4.6 Development of Sensor Unit	21
3.4.7 Experimental Work	22
3.4.8 Experiment 1: Canacitance to Voltage Circuit Behavior	32 33
3.4.0 Experiment 2: Sensor Cylinder Behavior	כב אכ
3.4.10 Calibration	24 25
3.4.11 Velidation	20
3.4.11 Valuation	20
3.4.12 Data Measurement	29
3.4.1.4 Hymothesis testing	41
3.4.15 The p value interpretation	42
3.4.16 Normality Test	45
3.4.10 Normanty Test	44 AE
2.4.19 Daired Semple T Test	45
2.5. Classification Dhase	40
2.5.1 Artificial Novel Network Modelling	47
2.5.2 AND Brogramming	48
2.5.2 AININ FIOGRAMMING	48
2.5.4 Confusion Mattire	50
5.5.4 Contusion Matrix	50
5.5.5 Determination for Number of Connection	52