UNIVERSITI TEKNOLOGI MARA

SYNTHESIS OF PEPTIDES BASED ON γ-BUTYROLACTONE SCAFFOLDS

SITI AISYAH BINTI ALIASAK

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

November 2016

ABSTRACT

As part of a research endeavor in investigating the synthetic utility of enantiopure azido trimethylsiloxy cyclohexene silyl ether as potential intermediates for bioactive compounds, two novel trimethylsiloxy cyclohexene peptides were synthesized. *N*Bocisoleucine-cyclohexene **111 a** and *N*Boc-leucine-cyclohexene **111 b** were synthesized *via* reduction amination of azide, Boc protection of amine termini, deprotection of Boc group and coupling reaction with natural amino acids (*N*Boc-isoleucine and *N*Boc-leucine) using peptide coupling protocol. Compound **111 b** was then used as the intermediate for the synthesis of incorporation γ -butyrolactone-peptide *via* oxidative cleavage of cyclohexene double bond to afford compound **112**. This compound, in turn, was used as an intermediate to afford a novel γ -butyrolactone amino ester **113**. These compounds can be act as versatile intermediates for further research endeavor and results extracted from this study might be used to design remarkable synthetic methodology and enhances scientific knowledge.

ACKNOWLEDGEMENT

In The Name of Allah, The Most Merciful and The Most Gracious.

First of all, trillion thanks to Allah for making me able to complete this thesis. I would like to express my sincerely gratitude and appreciation to my supervisor Dr. Mohd Tajudin Mohd Ali for giving me the opportunity to do this research. I thank him for his concern, guidance, invaluable suggestions, personal interest, financial support, encouragement and constructive critism throughout all stages of this research work. Without his guidance, this research study would not have reached its final form.

I also would like to thanks my co-supervisor, Dr. Mohd Fazli Mohammat @ M.yahya for his concern, assistance, support, and advice on the project. I would like to thank the staff members Pn. Roslizawati Ishak and En. Adnan for their kindness, technical assistance and give a chance to work and use the facilities in laboratory. Further appreciation goes to Universiti Teknologi MARA (UiTM) for giving me an opportunity to pursue my studies until the completion of this research.

My special thank goes to all colleagues and my friends especially Habsah Zahari, Mohd Aznuddin, Nur Azlin, Syamil, Lokman, Wan Zuraida, Nur Nadiah, Farhan Lockman, Nur Liyana, Rafaie, Aimi Suhaily, Nur Hakimah, Nur Nazura, Dr. Fatimah Salim, Nurulhuda, Pn. Fazni Suzila, all Block G members and Lab M609 members for their help, opinion, support, sharing knowledge and encouragement. It was wonderful to know these people.

Finally, I want to dedicate this work to my beloved family especially my parents Aliasak Bin Jaafar and Jamilah Binti Abd Manaf. Special thanks and gratitude to my parents for constantly support, love, prayers, encouragement, and patience throughout my master's work. Also, thanks to my beloved friends and siblings Siti Aminah Amila, Mohd Fadhilah Khawailid, Mohd Hambali, Siti Farihah, Mohd Khazuan, Mohd Rasydan Faris, Siti Nurhadirah, Maslina Mustafa, Ambri, Nur Azlin, Qausar, Qaireen Nurhayfa, Aqeef Ashman Ziyyad, Amru Nasrul Haq and Habsah Zahari for their support.

Thank you.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHORS'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENT	vi
LIST OF TABLES LIST OF FIGURES	ix
	x
LIST OF SCHEMES	xi
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	3
1.3 Significant of Study	4
1.4 Objectives of study	4
1.5 Scope and Limitation of Study	5
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Introduction to γ-Butyrolactone	6
2.2 Synthesis of γ-Butyrolactone	7
2.3 Biological Activities of γ -Butyrolactone	17
2.3.1 Anticancer Properties	18
2.3.2 Antitumor Properties	19
2.3.3 Antituberculosis Properties	22
2.3.4 Anticonsulvant Properties	23
2.4 Introduction to Synthesis of Amino Acid Peptides	24
2.5 Synthesis of Peptides	25

СН	APTER THREE: METHODOLOGY	28
3.1	Introduction	28
3.2	Chemicals and Materials	29
3.3	Elemental Analysis and Physical Measurement	30
	3.3.1 Preparation of Glassware	30
	3.3.2 Thin Layer Chromatography (TLC) Analysis	30
	3.3.3 Column Chromatography	31
	3.3.4 Fourier Transform Infrared (FTIR) Spectroscopy	31
	3.3.5 Mass Spectra	31
	3.3.6 ¹ H and ¹³ C Nuclear Magnetic Resonance (NMR) Spectroscopy	32
3.4	Individual Experimental Procedures	32
	3.4.1 Epoxidation of 1,4-Cyclohexadiene	32
	3.4.2 Ring Opening of Epoxide	33
	3.4.3 Reduction Amination and Boc Protection of Amine Termini	33
	Compound	
	3.4.4 Deprotection of N-Boc Cyclohexene Silyl Ether	34
	3.4.5 Coupling Reaction of Cyclohexene Silyl Ether	35
	3.4.5.1 Peptide Synthesis of Compound 111 a	35
	3.4.5.1 Synthesis of Compound 111 b	36
	3.4.6 Synthesis of γ-Butyrolactone Amino Ester	37
	3.4.6.1 Oxidative Cleavage	37
	3.4.6.2 Benzylation of γ -Butyrolactone Amino Ester 113	38
	3.4.7 Toxicity Test Towards Human Colorectal Carcinoma Cell	39
СН	APTER FOUR: RESULTS AND DISCUSSION	40
4.1	Retrosynthetic Analysis of N-Boc Protected Trimethylsiloxy Cyclohexene	40
	4.1.1 Synthesis of Epoxide	41
	4.1.2 Enantioselective Ring Opening of Epoxide	42
	4.1.3 Reduction Amination and Boc Protection of Azido Trimethylsiloxy	44
	Cyclohexene 108	
	4.1.4 Spectroscopic Data of Compound 109	45
	4.1.4.1 ¹ H NMR and ¹³ C NMR Data for Compound 109	45
	4.1.4.2 FT-IR Data for Compound 109	46