UNIVERSITI TEKNOLOGI MARA

DIELECTRIC, AC CONDUCTIVITY AND OPTICAL PROPERTIES OF MIXED IONIC-ELECTRONIC 20Li₂O-xBi₂O₃-(80-x)TeO₂ TELLURITE GLASS

SITI WAHIDAH BINTI NAZARI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

November 2017

ABSTRACT

Mixed ionic electronic $20Li_2O-xBi_2O_3-(80-x)TeO_2$; (x = 3-15 mol%) glasses have been prepared by melt-quenching method to investigate the effect of bismuth on dielectric and ac conductivity behaviors. Structural properties of the glasses was investigated by Fourier Transform Infrared (FTIR) spectroscopy. Dielectric properties, ac conductivity and modulus formalism of the glasses were investigated by using impedance spectroscopy measurements in the frequency range of 0.01Hz to 1MHz and in the temperature range of 323 K - 473 K. IR spectra of the present glass system shows Bi₂O₃ plays the role of network former with BiO₃ unit structure at $x \leq 1$ 7 mol% but acts as network modifier with BiO₆ unit structure for $x \ge 10$ mol%. Transference number measurements showed the glasses were initially predominantly ionic for $x \leq 7$ mol% before a large drop in ionic contribution accompanied by increase in electronic carrier for $x \ge 10$ mol% where the glasses transform into mixed ionic electronic glass with ionic conduction still as the major component. The dielectric constant ε' and ac conductivity showed increasing trend with the increase in Bi_2O_3 except for an unexpected drop at x = 7 mol%. The anomalous drop is suggested to be due to mixed ionic electronic (MIE) effect which involves some form of hindering effect of Bi₂O₃ on Li⁺ ions. The drop in ionic conductivity in the $x \ge 10$ mol% region is suggested to be due to some form of hindering effect of the heavier Bi^{3+} on Li^{+} . AC conductivity showed weaker dispersion at low frequency (f < 100Hz) and exhibited stronger dispersion at higher frequency (f > 100Hz) where in the dispersion region, the charge transport mechanism was found to be Correlated Barrier Hopping (CBH) for all glass samples except for $x = 7 \mod \%$ where the charge transport mechanism was Overlapping Large Polaron Tunneling (OLPT) at low frequency (f < 100Hz) and CBH mechanism at high frequency (f > 100Hz) respectively. The imaginary part of electrical modulus spectra was fitted to the Kohlrausch-Williams-Watts (KWW) stretched exponential function and the value of the stretched exponent, β which represents the degree of interaction between the ions was found to be dependent on composition. Bi2O3 addition to 20Li2O-xBi2O3-(80x)TeO₂ glasses resulted in slow decrease of optical band gap E_{opt} up to x = 13 mol%before a large drop at higher Bi₂O₃ content (x = 15 mol%). This optical behaviour is suggested to be related to changes in non bridging oxygen NBO content in the glass system in conjunction to presence of defects in the glasses. Urbach energy E_u shows opposite behaviour with E_{opt} indicating electron transition from the top of valence band to lowest defect state. On the other hand, the variation of refractive index n is influenced by electronic polarizability α_o^{2-} . Addition of bismuth at $x \ge 7$ mol% showed *n* increased due to increase in α_a^{2-} as a result of increase in NBOs as NBOs bind electron less tightly than BOs and makes NBO more polarizable.

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Ahmad Kamal Hayati Yahya for his patience, motivation, enthusiasm, immense knowledge and continuous support of my MSc studies and research. His insightful comments and guidance helped me throughout my research and writing of this thesis. I would also like to thank my co-supervisors Assoc. Prof. Dr Halimah Mohamed Kamari and Dr. Abdel Baset Mohamed for their encouragement and continuous support toward the completion of this studies.

My sincere thanks also goes to all of the lab assistants for their technical support. Further thanks to all my lab members, Mrs. Rosdiyana Hisam, Mrs. Syafawati Nadiah Mohamed, Mr Mohd Fauzi Maulud, Mrs. Muliana Ismail, Ms. Rozilah Rajmi, Mr Aizuddeen Mustafa, Ms. Siti Maryam Kamal Arifin and Ms. Nor Asmira Amaran. Their views and tips are very much appreciated. I cannot find the appropriate words that could properly describe my appreciation for their devotion, support and faith in me toward accomplishing my goals. I would like to acknowledge their comments and suggestions, which was crucial for the successful completion of this thesis.

Last but not least, I would like to express my very profound gratitude to my husband, Juliady Rifandy Junaidi, my parents, Nazari Jelani and Juriah Radiyo, my in-laws, Junaidi Abd Rahman and Shukriah Manaf and also my siblings for providing me with never ending support and continuous encouragement throughout my years of studies and through the process of researching and publishing this thesis. This accomplishment would not have been possible without them. Thank you.

Siti Wahidah Nazari

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF ABBREVIATION	xv
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement of Study	4
1.3 Objectives of Study	5
1.4 Significance Of Study	6
CHAPTER TWO: LITERATURE REVIEW	7
2.1 Glass	7
2.1.1 General Concepts of Glass	7
2.1.2 Formation of Glass	8
2.1.3 Component of Oxide Glasses	9
2.1.3.1 Network Former	9
2.1.3.2 Network Modifier	10
2.1.3.3 Intermediate Glass	10
2.2 Tellurite Glass	10
2.2.1 Structure of Tellurite Glass	10
2.2.2 Structural Changes in Tellurite Glass when Doped with Modifier	12

CHAPTER ONE INTRODUCTION

1.1 BACKGROUND OF STUDY

Tellurium oxide (TeO₂) glasses have attracted great interest on account of their good properties such as thermal stability, high dielectric constants, high refractive indices and low glass transition temperature compared to other glass systems (Rajendran, Palanivelu, Chaudhuri, & Goswami, 2003; Udovic et al. 2006; M.Rada, Rus, S.Rada, Culea, & Rusu, 2014; Rani, Sanghi, Ahlawat, & Agarwal, 2014). Tellurite glass is formally known as a conditional glass former hence pure TeO₂ is not stable and crystallizes easily (Fares, Jlassi, Elhouichet, & Férid, 2014). Due to the reason, tellurite is not able to form glass without the aid of modifier such as alkali metal oxide, alkaline earth metal oxide, transition metal oxide or other glass modifiers (Yahia et al. 2009; Azianty, Yahya, & Halimah, 2012). Tellurite based glasses changes its basic structural unit from TeO₄ trigonal bipyramid (tbp) (Sokolov, Plotnichenko, Koltashev, & Grishin, 2009; Kaur & Khanna, 2014) to TeO₃ trigonal pyramid (tp) (Ali & Shaaban, 2008; Gaafar, Abdeen, Mostafa, & Marzouk 2011; Yousef, Sayed, Al-Qaisi, & Badriah 2013) when doped with glass modifiers.

Addition of alkali metal oxides into tellurite glass induced the glass to exhibit ionic conductivity such as reported in $xNa_2O-(1-x)TeO_2$ and $0.4Li_2O-0.6[xP_2O_5-(1-x)Te_2O_4]$ glass (Jayasinghe, Coppo, Bandaranayake, & Souquet, 1995; Jayasinghe, Bandaranayake, Dissanayake, & Gunawardane, 1995). On the other hand, tellurite glasses containing transition metal oxides such as V_2O_5 , Fe_2O_3 , WO_3 and MoO_3 shows electronic conductivity behaviour which is attributed by polaron conduction mechanism. Several studies have suggested that in binary V_2O_5 -TeO₂ glasses, electronic conductivity takes place due to the multivalency of vanadium ion (Laila, Supardan, & Yahya, 2013). The polaron conduction mechanism arise from the hopping of electron from V^{4+} site to V^{5+} site of V_2O_5 which induces polarization of the lattice and forms polaron (Srilatha et al. 2011; Mirzayi & Hekmatshoar, 2013). Interestingly, glasses can also have mixed ionic-electronic conductivity with presence of both monovalent cations and transition metal oxides. Several mixed electronic-