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ABSTRACT 

 

Cryogenics is dealing with very low temperatures of less than 120 K. 

Thermal insulation is a key to minimize heat leak in cryogenics during 

transportation in transfer line. The present study is conducted to derive 

three-dimensional heat transfer mathematical equations to predict 

conductivity of insulation systems for liquid nitrogen pipe flow. Elliptic 

differential equations on special domains were derived based on Fourier 

method for three-dimensional heat equations. As a result from the study, 

three-dimensional heat conduction equation for a cylindrical problem was 

successfully derived. The derived equation provides a mathematical solution 

to determine the heat transfer rate for a system of cryogenic pipe insulated 

with multiple layers. 

 

Keywords: Cryogenic, Thermal Insulation System, Liquid Nitrogen, Pipe 

Flow, Three-Dimensional Heat Conductivity 
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Introduction 
 

Cryogenics is a branch of physics dealing with the production and effects of 

very low temperatures of less than 120 K (−153 °C) [1], although this 

historical summary does not adhere to a strict 120 K definition [2]. 

Applications of cryogenic can be found in variety of fields such as physics, 

chemistry, biology, medicine, engineering and industry. Cryogenic 

technology gained widespread recognition during the 1960s with emphasis 

on cryogenic techniques, cooling system installation configurations, and 

applications [3]. 

Thermal insulation is a key to minimize heat leak in cryogenics during 

transportation of transfer line, which is extremely important in cryogenics 

that deal with very low temperature apparatuses and experiments. Heat leak 

in cryogenic insulated transfer line that caused temperature raise is a big 

concern. Efficient thermal insulation determines the cost effectiveness in 

cryogenics transfer line. Hence, effective thermal insulation is required to 

minimize heat leak.  

The most important advancement in cryogenic insulation over the past 

50 years has been the development of multilayer insulation (MLI) [4]. Based 

on the study done by Chorowski and Polinski [5], the most efficient and best 

matched to cryogenic conditions is a multilayer vacuum insulation (MLI). 

Designing an effective thermal insulation for cryogenic transfer line is a 

complex study. Studies on cryogenic transfer lines have regained importance 

in recent times with the growth of large-scale applications of 

superconductivity and the needs of space programmes [6, 7]. 

 
Liquid nitrogen 
Liquid nitrogen (LN2) is obtained from air in large liquefaction and 

separation plants. LN2 is a cheap and safe source of cold that is able to 

maintain temperatures far below the freezing point of water. LN2 is 

commonly used in the pre-cooling of cryogenic equipment due to its high 

latent heat of evaporation [8]. 

LN2 boils at 77 K (−196 °C) and freezes at 63 K (−210 °C). To 

maintain LN2 in the liquefied form is difficult as there is a continuous boil 

off due to heat in leaks, especially in the ambient temperature (300 K) that is 

relatively high compared to LN2 boiling temperature (77 K). The liquid 

nitrogen boils off continuously due to various modes of heat transfer. LN2 is 

a very efficient coolant but limited by the Leidenfrost effect. LN2 is a 

compact and readily transported source of nitrogen gas without 

pressurization. LN2 is a fairly inert gas medium and has unique properties 

that makes it the most ideal space simulation chamber with cold drawing of 

stainless steel used in specific industrial and scientific research applications 

[3]. 
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Heat transfer in cryogenic 
The heat transfer processes in cryogenics are basically the same for any 

engineering temperature range. According to T.M. Flynn [9], heat transfer at 

low temperatures is governed by the same three mechanisms present at 

ambient and elevated temperatures: conduction, convection, and radiation. 

Therefore, all the general equations are appropriate for low-temperature 

applications as long as they are adjusted for the property changes in both 

materials and fluids [9]. 

According to Jha A.R. [3], cryogenic heat transfer depends on the 

operating parameters, flow pipe cross-sectional geometry (circular or 

rectangular or square), and fluid flow types such as laminar, turbulent, or 

transient. Heat transfer properties for a linear flow are quite different from 

those for a turbulent flow or transient flow. Under the turbulent flow 

environment, the flow will be treated as a non-homogenous flow; therefore, 

nonlinear flow equations will be involved in the thermal analysis of heat 

exchangers [3]. The rotation of the tube carrying the fluid does not affect the 

laminar flow resistance once the established cooling flow exists. However, 

under the turbulent flow conditions, flow resistance undergoes radical change 

[3]. 

Figure 1 shows the typical design of vacuum insulated pipe (VIP) 

recommended by the industry partner, Cryogas Tech [10]. The outer pipe 

temperature is equivalent to the ambient temperature, 300 K (27˚C) and the 

inner pipe temperature is equivalent to the liquid nitrogen temperature, 77 K 

(-196˚C). Since there is temperature difference between outer pipe and inner 

pipe, the heat transfer is in the direction of decreasing temperature which is 

from outer pipe to inner pipe. This means the heat flows into the pipe 

containing cryogenic fluid. 

 

 
 

Figure 1: Typical Design of Vacuum Insulated Pipe (VIP) [10] 
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Concept of the heat flows into the pipe containing cryogenic fluid 
Heat transfer (or heat) is thermal energy in transit due to a spatial temperature 

difference [11]. According to the second law of thermodynamics, heat flows 

from high temperature to lower temperature objects. If these objects are not 

thermal insulated and they are in proximity, heat flows between them can 

only be slowed instead of being stopped. 

The Second Law of Thermodynamics states that "in all energy 

exchanges, if no energy enters or leaves the system, the potential energy of 

the state will always be less than that of the initial state." This is also 

commonly referred to as entropy. 

Temperature and heat flow represents thermal energy available and 

movement of thermal energy from place to place respectively. Temperature 

and heat flow are the two things concerned with the discipline of heat 

transfer. 

Heat transfer mechanisms can be grouped into conduction, 

convection, radiation or any combination of these. Heat conduction or 

thermal conduction is the transfer of energy from the more energetic (higher 

temperature) to the less energetic particles (lower temperature) of a substance 

due to interactions between the particles [11]. Based on Fourier Law of heat 

conduction, when there exists a temperature gradient within a body, heat 

energy will flow from the region of high temperature to the region of low 

temperature. This phenomenon is known as conduction heat transfer and is 

described by Fourier's Law (named after the French physicist Joseph 

Fourier). According to Fourier Law of heat conduction, thermal conductivity 

(𝑘) is the property of a material that indicates its ability to conduct heat and it 

appears primarily in Fourier's Law for heat conduction. 

 

Thermal resistance circuits in series and parallel for the thermal 
insulated cryogenic flow 
For one-dimensional problem, where the temperature variation is the only 

variable (example, along the x-coordinate direction), Fourier's Law of heat 

conduction is simplified to the scalar equations as [9, 11, 12]:- 

 

𝑞′′ = −𝑘
𝜕𝑇

𝜕𝑥
 (1) 

 

𝑞 = −𝑘𝐴
𝜕𝑇

𝜕𝑥
 (2) 

 

where the heat flux, 𝑞′′, dependent to the given temperature profile, 𝑇, and 

thermal conductivity, 𝑘. The negative sign is to indicate the heat flows down 

the temperature gradient.  
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From Equation (2), 𝑞 represents the heat flow through a defined cross-

sectional area 𝐴, measured in watts:- 

𝑞 = ∫ 𝑞′′

𝐴

𝑑𝐴   (3) 

 

Integrating the one-dimensional heat flow equation through a material's 

thickness 𝛥𝑥 gives: - 

𝑞 =
𝑘𝐴

𝛥𝑥
(𝑇1 − 𝑇2) (4) 

 

where 𝑇1 and 𝑇2 are the temperatures at the two boundaries. 

 

Figure 2 shows the side view and front view of typical design of 

vacuum insulated pipe for the present study. 

 

 
 

(a) Side View 

 

 
 

(b) Front View (Cross Sectional View) 

 

Figure 2: Side View and Front View of Typical Design of Vacuum Insulated 

Pipe 

 



Lim Chong Lye et. al. 

 

44 
 

 

Treatment of heat transfers analogous to electrical circuit 
An analogy exists between the thermal resistance in a thermal circuit and 

electrical resistance in an electrical circuit [11]. Equivalent thermal circuit for 

composite slab or cylindrical shell system may be characterized by series–

parallel configurations to determine the equivalent thermal conductivity for 

the system. 

Figure 3 shows the electrical circuit or thermal resistance schematic of 

the insulation systems. The thermal resistances are connected in series from 

layer to layer of the insulation systems. 

 

 

 
 

Figure 3: Thermal resistance schematic of the insulation systems 

 

Mathematical Equation Result 
 
Three-dimensional heat conduction 
For one-dimensional problem, Fourier's Law of heat conduction is simplified 

to the scalar equations as Equation (1) and (2). For three-dimensional 

problem in Cartesian coordination (𝑥, 𝑦, 𝑧) with temperature, 𝑇(𝑥, 𝑦, 𝑧), the 

conduction heat flux vector will be [9, 11, 12]: 

 

𝑞′′ = −𝑘
𝜕𝑇

𝜕𝑥
𝑖 − 𝑘

𝜕𝑇

𝜕𝑦
𝑗 − 𝑘

𝜕𝑇

𝜕𝑧
𝑘 (5) 

 

where: 𝑞𝑥
′′ = −𝑘

𝜕𝑇

𝜕𝑥
 ;   𝑞𝑦

′′ = −𝑘
𝜕𝑇

𝜕𝑦
  ;  𝑞𝑧

′′  = −𝑘
𝜕𝑇

𝜕𝑧
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Figure 5: Cylindrical coordination systems 

 

 
 

Figure 6: Spherical coordination systems 

 

For three-dimensional problem in cylindrical coordination (𝑟, ∅, 𝑧) with 

temperature, 𝑇(𝑟, ∅, 𝑧), the conduction heat flux vector will be: 

 

𝑞′′ = −𝑘
𝜕𝑇

𝜕𝑟
𝑖 − 𝑘

𝜕𝑇

𝑟𝜕∅
𝑗 − 𝑘

𝜕𝑇

𝜕𝑧
𝑘 (6) 

 

where: 𝑞𝑟
′′ = −𝑘

𝜕𝑇

𝜕𝑟
 ;   𝑞∅

′′ = −𝑘
𝜕𝑇

𝑟𝜕∅
  ;   𝑞𝑧

′′ = −𝑘
𝜕𝑇

𝜕𝑧
 

 

 

For 3-dimensional problem in spherical coordination (𝑟, ∅, 𝜃) with 

temperature, 𝑇(𝑟, ∅, 𝜃), the conduction heat flux vector will be: 

 

𝑞′′ = −𝑘
𝜕𝑇

𝜕𝑟
𝑖 − 𝑘

𝜕𝑇

𝑟𝜕𝜃
𝑗 − 𝑘

𝜕𝑇

𝑟 𝑠𝑖𝑛 𝜃 𝜕∅
𝑘 (7) 

 

where: 𝑞𝑟
′′ = −𝑘

𝜕𝑇

𝜕𝑟
 ;   𝑞𝜃

′′ = −𝑘
𝜕𝑇

𝑟𝜕𝜃
  ;   𝑞∅

′′ = −𝑘
𝜕𝑇

𝑟 𝑠𝑖𝑛 𝜃 𝜕∅
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As shown in Figure 7, three-dimensional problem in cylindrical coordination 
(𝑟, ∅, 𝑧) with temperature, 𝑇(𝑟, ∅, 𝑧) are proposed to be used for the present 

study. 

 

 
 

Figure 7: Cylindrical coordination systems proposed for the present study 

 

Three-dimensional heat equation 
By letting 𝑢(𝑥, 𝑦, 𝑧, 𝑡) as the temperature at a point (𝑥, 𝑦, 𝑧) and instant 

time 𝑡, the differential equation as heat equation will be: 

 

𝜕𝑢

𝜕𝑡
= 𝑐2𝛻2𝑢 = 𝑐2 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
) (8) 

 

where the constant 𝑐2 = 𝑘 (𝜎𝜌)⁄  is thermal diffusivity, 𝑘 is the thermal 

conductivity, 𝜎 is the specific heat, and ρ is the density of the material. 

 

Let the initial condition as  𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧), where 𝑓(𝑥, 𝑦, 𝑧) is the 

initial temperature distribution.  

 

For the cylindrical problem, 𝑆 = {𝑥2 + 𝑦2 ≤ 𝑟2; 0 ≤ 𝑧 ≤ 𝑍0} with boundary 

curves 𝛤 = 𝛤1⋃𝛤2⋃𝛤3. (describe the boundary 𝛤1, 𝛤2 and 𝛤3. For example 

Γ1 = {(𝑥, 𝑦, 𝑧): 𝑥
2 + 𝑦2 = 𝑟2, 0 ≤ 𝑧 ≤ 𝑍0}, Γ2 = {(𝑥, 𝑦, 𝑧): 𝑥

2 + 𝑦2\  𝑟2, 𝑧 =
0}, Γ3 = {(𝑥, 𝑦, 𝑧): 𝑥2 + 𝑦2 ≤ 𝑟2, 𝑧 = 𝑍0},  ) 
 

The boundary conditions as 𝑢|𝛤𝑖 = 𝑔_𝑖 (𝑥, 𝑦, 𝑧);    for 𝑖 = 1,2,3. We define  

 

𝑔(𝑥, 𝑦, 𝑧) = {

𝑔1(𝑥, 𝑦, 𝑧), (𝑥, 𝑦, 𝑧) ∈ Γ1;

𝑔2(𝑥, 𝑦, 𝑧), (𝑥, 𝑦, 𝑧) ∈ Γ2;

𝑔3(𝑥, 𝑦, 𝑧), (𝑥, 𝑦, 𝑧) ∈ Γ3.
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This function is piecewise continuous function. Many engineering problems 

can be reduced to the heat equation with piecewise smooth function on the 

boundary. We can make the latter continuous by letting  

 

(𝑔1 − 𝑔2)|𝛤1∩Γ2 = 0, (𝑔1 − 𝑔3)|𝛤1∩Γ3 = 0, (𝑔2 − 𝑔3)|𝛤2∩Γ3 = 0. 

 

In this work, we present the separation method for the case of steady heat 

transfer processes. 

 

 
 

Figure 8: Cylindrical problem 

 

For the steady-state, the heat does not depend on the time changes: 

 
𝜕𝑢

𝜕𝑡
= 0 

 

In the case of steady state, the boundary problem for the heat equation 

becomes: 

 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
= 0, (𝑥, 𝑦, 𝑧) ∈ 𝑆, (9) 

 

𝑢(𝑥, 𝑦, 𝑧)|Γ = 𝑔(𝑥, 𝑦, 𝑧). (10) 
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Shifting to the cylindrical coordinates 

 

𝑥 = 𝑟 𝑐𝑜𝑠 ∅ , 
𝑦 = 𝑟 𝑠𝑖𝑛 ∅, 
𝑧 = 𝑧 

 

 

0 ≤ ∅ ≤ 2𝜋, 0 ≤ 𝑟 ≤ 𝑅, 0 ≤ 𝑧 ≤ 𝑍0, (11) 

We obtain the following forms for the boundary conditions: 

 

𝑢(𝑟, ∅, 0) = 𝑔1(𝑟, ∅)           0 ≤ 𝑟 ≤ 𝑅, 0 ≤ ∅ ≤ 2𝜋 

𝑢(𝑟, ∅, 𝑍0) = 𝑔2(𝑟, ∅)         0 ≤ 𝑟 ≤ 𝑅, 0 ≤ ∅ ≤ 2𝜋 

𝑢(𝑅, ∅, 𝑧) = 𝑔3(∅, 𝑧)          0 ≤ ∅ ≤ 2𝜋, 0 ≤ 𝑧 ≤ 𝑍0 

 

The heat equation will have the following form: 

 

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
+
1

𝑟2
𝜕2𝑢

𝜕∅2
+
𝜕2𝑢

𝜕𝑧2
= 0. (12) 

  

To solve Equation (12), three-dimensional Laplace’s equation, the 

separation-of-variables method is used. By assuming the solution to the 

Equation (12) as a product of functions of the independent variables(𝑟, ∅, 𝑧): 
 

𝑢 = 𝑅𝛷𝑍    𝑤ℎ𝑒𝑟𝑒 𝑅 = 𝑅(𝑟), 𝛷 = 𝛷(∅), 𝑎𝑛𝑑  𝑍 = 𝑍(𝑧) (13) 

 

Substituting the product solution into the Equation (12), the derivatives are 

now total derivatives: 

 

𝑑2𝑅

𝑑𝑟2
𝛷𝑍 +

1

𝑟

𝑑𝑅

𝑑𝑟
𝛷𝑍 +

1

𝑟2
𝑅
𝑑2𝛷

𝑑∅2
𝑍 + 𝑅𝛷

𝑑2𝑍

𝑑𝑧2
= 0 (14) 

 

Then divide Equation (14) by the product expression for the solution to 

obtain: 

 

1

𝑅

𝑑2𝑅

𝑑𝑟2
+
1

𝑟

1

𝑅

𝑑𝑅

𝑑𝑟
+
1

𝑟2
1

𝛷

𝑑2𝛷

𝑑∅2
+
1

𝑍

𝑑2𝑍

𝑑𝑧2
= 0 (15) 

 

The last term of Equation (15) is a function of z only, so it must be a 

constant. Let’s set this constant equal to  𝜆. Then an ordinary differential 

equation for 𝑍 is obtained as: 

 

𝑑2𝑍

𝑑𝑧2
− 𝜆𝑍 = 0 (16) 
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Where 𝜆 is called separation constant. 

With assumption: (if you take boundary function 0 then the solution is zero) 

 

𝑢(𝑟, ∅, 0) = 𝑔1(𝑟, ∅) = 0 𝑎𝑛𝑑 𝑢(𝑟, ∅, 𝑍0) = 𝑔2(𝑟, ∅) = 0  
for        0 ≤ 𝑟 ≤ 𝑅, 0 ≤ ∅ ≤ 2𝜋 

 

At 𝑧 = 0 

𝑢(𝑟, ∅, 0) = 𝑅(𝑟) ∙ 𝛷(∅) ∙ 𝑍(0) = 0 

 

Since 𝑅(𝑟) ≠ 0 𝑎𝑛𝑑 𝛷(∅) ≠ 0, 𝑡ℎ𝑒𝑛 𝑍(0) = 0 

 

At 𝑧 = 𝑍0 

𝑢(𝑟, ∅, 𝑍0) = 𝑅(𝑟) ∙ 𝛷(∅) ∙ 𝑍(𝑍0) = 0 
 

Since 𝑅(𝑟) ≠ 0 𝑎𝑛𝑑 𝛷(∅) ≠ 0, 𝑡ℎ𝑒𝑛 𝑍(𝑍0) = 0 

Solution to Differential Equation (16) is shown in Table 3. 

 

𝑑2𝑍

𝑑𝑧2
− 𝜆𝑍 = 0; 𝑍(0) = 0, 𝑍(𝑍0) = 0 

 

Table 3: Solution to Differential Equation (16) 

 

Case I: 𝜆 > 0 Case II: λ = 0 Case III: λ < 0 

G.S:  

𝑍(𝑧)

= 𝐴𝑒√𝜆𝑧 + 𝐵𝑒−√𝜆𝑧 

When 𝑍(0) = 0 

𝐴 + 𝐵 = 0  
⟹    𝐴 = −𝐵 

When 𝑍(𝑍0) = 0 

𝐴𝑒√𝜆𝑍0 + 𝐵𝑒−√𝜆𝑍0 = 0 

𝐴𝑒√𝜆𝑍0 − 𝐴𝑒−√𝜆𝑍0 = 0 

Multiply the equation 

by 𝑒√𝜆𝑍0 

𝐴𝑒2√𝜆𝑍0 − 𝐴 = 0 

𝐴(𝑒2√𝜆𝑍0 − 1) = 0 
Since 

(𝑒2√𝜆𝑍0 − 1) ≠ 0 

⟹   𝐴 = 0 

 

The Differential 

Equation (16) 

becomes: 

𝑑2𝑍

𝑑𝑧2
= 0 

G.S: 𝑍(𝑧) = 𝑎𝑧 + 𝑏 

When 𝑍(0) = 0 

𝑎(0) + 𝑏 = 0  ⟹    𝑏
= 0 

When 𝑍(𝑍0) = 0 

𝑎𝑍0 = 0 

Since 

𝑍0 > 0 ⟹   𝑎 = 0 
 

Hence, no solution for 

case II. 

Let 𝜆 = −𝜎2, the 

Differential Equation 

(16) becomes: 

𝑑2𝑍

𝑑𝑧2
+ 𝜎2𝑍 = 0 

G.S: 

𝑍(𝑧)
= 𝐴 𝑐𝑜𝑠(𝜎𝑧)
+ 𝐵 𝑠𝑖𝑛(𝜎𝑧) 

When  𝑍(0) = 0 

𝐴 𝑐𝑜𝑠(0) + 𝐵 𝑠𝑖𝑛(0)
= 0 

𝐴 + 0 = 0   ⟹ 𝐴 = 0 

When 𝑍(𝑍0) = 0 

𝐵 𝑠𝑖𝑛(𝜎𝑍0) = 0 

Taking B = 1 

𝑠𝑖𝑛(𝜎𝑍0) = 0   
⟹ 𝜎𝑍0 = 𝑛𝜋 



Lim Chong Lye et. al. 

 

50 
 

 

Hence, no solution for 

case I. 
𝜎 =

𝑛𝜋

𝑍0
, 𝑛 = 1,2, … 

 

Hence, solution for 

case III: 

𝑍𝑛(𝑧)

= 𝑠𝑖𝑛 (
𝑛𝜋

𝑍0
𝑧) (17) 

For  n = 1,2, … 

 

Equation (15) becomes: 

 

1

𝑅

𝑑2𝑅

𝑑𝑟2
+
1

𝑟

1

𝑅

𝑑𝑅

𝑑𝑟
+
1

𝑟2
1

𝛷

𝑑2𝛷

𝑑∅2
− 𝜎2 = 0 (18) 

 

Multiply the Equation (18) with 𝑟2, giving: 

 

𝑟2
1

𝑅

𝑑2𝑅

𝑑𝑟2
+ 𝑟

1

𝑅

𝑑𝑅

𝑑𝑟
− 𝜎2𝑟2 +

1

𝛷

𝑑2𝛷

𝑑∅2
= 0 (19) 

 

Separate the last term of Equation (19) by taking the separation constant 

as −𝑚2. Then an ordinary differential equation for 𝛷 is obtained as: 

 

𝑑2𝛷

𝑑∅2
+𝑚2𝛷 = 0 (20) 

 

Solution to Differential Equation (20) is 

 

𝛷(∅) = 𝑐𝑚 𝑐𝑜𝑠(𝑚∅) + 𝑑𝑚 𝑠𝑖𝑛(𝑚∅) 𝑓𝑜𝑟 𝑚 = 0,1,2, … (21) 

 

Then the ODE for the radial function is obtained which is written in standard 

form as: 

 

𝑑2𝑅

𝑑𝑟2
+
1

𝑟

𝑑𝑅

𝑑𝑟
+ (−𝜎2 −

𝑚2

𝑟2
)𝑅 = 0 

 

𝑑2𝑅

𝑑𝑟2
+
1

𝑟

𝑑𝑅

𝑑𝑟
+ [− (

𝑛𝜋

𝑍0
)
2

−
𝑚2

𝑟2
] 𝑅 = 0 

(22) 

for   𝑛 = 1,2,…  and  𝑚 = 0,1,2, … 
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Equation (22) is Bessel’s equation of order 𝑛 and its solutions are called as 

Bessel functions. It is known that one of the useful general forms for Bessel’s 

equation is 

 

𝑑2𝑦

𝑑𝑥2
+
(1 − 2𝑎)

𝑥

𝑑𝑦

𝑑𝑥
+ [𝑏2𝑐2𝑥2(𝑐−1) +

(𝑎2 − 𝑛2𝑐2)

𝑥2
] 𝑦 = 0 (23) 

 

The quantities 𝑎, 𝑏, 𝑐, and 𝑛 are constants. The general solution of Equation 

(23) is 

 

𝑦(𝑥) = 𝑥𝑎{𝑐1𝐽𝑛(𝑏𝑥
𝑐) + 𝑐1𝑌𝑛(𝑏𝑥

𝑐)} (24) 

 

By comparing Equation (22) to Equation (23) and taking 𝑦 = 𝑅, 𝑥 = 𝑟: 

The numerical coefficient multiplying the first derivative is 1: 

 

(1 − 2𝑎) = 1     ⟹ 𝑎 = 0 

 

The exponent on the term multiplying y and containing powers other than 

𝑟−2 is zero: 

2(𝑐 − 1) = 0     ⟹ 𝑐 = 1  
 

The numerical coefficient of the term multiplying y and the term 𝑟−2 is −𝑚2: 

 

(𝑎2 − 𝑛2𝑐2) = −𝑚2   ⟹  𝑛 = 𝑚 
 

where 𝑚 = 0,1,2, … 

The numerical coefficient of the term containing 𝑟2(𝑐−1) is − 𝜎2 

 

𝑏2𝑐2 = −𝜎2 = −(
𝑛𝜋

𝑍0
)
2

    ⟹   𝑏 = 𝑖
𝑛𝜋

𝑍0
 

 

Therefore, the general solution of Equation (22) is 

 

𝑅(𝑟) = 𝑐1𝐽𝑚 (𝑖
𝑛𝜋

𝑍0
𝑟) + 𝑐2𝑌𝑚 (𝑖

𝑛𝜋

𝑍0
𝑟) (25) 

 

where 𝑚 = 0,1,2, … 

 

Since 𝑟 → 0, 𝑌𝑚(𝑟) → +∞, therefore  𝑐2 = 0 

𝑅(𝑟) = 𝑐1𝐽𝑚 (𝑖
𝑛𝜋

𝑍0
𝑟) 

 



Lim Chong Lye et. al. 

 

52 
 

 

The general solution to the Heat Equation (12) will become: 

 

𝑢(𝑟, ∅, 𝑧)  

(26) 
=∑∑ 𝑐1𝐽𝑚 (𝑖

𝑛𝜋

𝑍0
𝑟) ∙ [𝑐𝑚 𝑐𝑜𝑠(𝑚∅) + 𝑑𝑚 𝑠𝑖𝑛(𝑚∅)] ∙ 𝑠𝑖𝑛 (

𝑛𝜋

𝑍0
𝑧)

∞

𝑚=0

∞

𝑛=1

 

 

At 𝑟 = 𝑅, 

𝑢(𝑅, ∅, 𝑧) = 𝑔3(∅, 𝑧)          0 ≤ ∅ ≤ 2𝜋, 0 ≤ 𝑧 ≤ Z0 

 

𝑔3(∅, 𝑧)  

(27) =∑∑ 𝑐1𝐽𝑚 (𝑖
𝑛𝜋

𝑍0
𝑅) ∙ [𝑐𝑚 𝑐𝑜𝑠(𝑚∅) + 𝑑𝑚 𝑠𝑖𝑛(𝑚∅)] ∙ 𝑠𝑖𝑛 (

𝑛𝜋

𝑍0
𝑧)

∞

𝑚=0

∞

𝑛=1

 

 

By taking 𝑐1 = 1 and letting 

 

𝐶𝑚(𝑛) = 𝐽𝑚 (𝑖
𝑛𝜋

𝑍0
𝑟) ∙ 𝑐𝑚 and 𝐷𝑚(𝑛) = 𝐽𝑚 (𝑖

𝑛𝜋

𝑍0
𝑟) ∙ 𝑑𝑚 

 

Equation (27) becomes 

 

𝑔3(∅, 𝑧) = ∑(∑[𝐶𝑚 𝑐𝑜𝑠(𝑚∅) + 𝐷𝑚 𝑠𝑖𝑛(𝑚∅)]

∞

𝑚=0

)

∞

𝑛=1

 ∙ 𝑠𝑖𝑛 (
𝑛𝜋

𝑍0
𝑧) (28) 

 

Let 𝛼𝑛(∅) = ∑[𝐶𝑚 𝑐𝑜𝑠(𝑚∅) + 𝐷𝑚 𝑠𝑖𝑛(𝑚∅)]

∞

𝑚=0

 (29) 

 

Equation (28) becomes 

𝑔3(∅, 𝑧) = ∑𝛼𝑛

∞

𝑛=1

 ∙ 𝑠𝑖𝑛 (
𝑛𝜋

𝑍0
𝑧) 

 

By solving 

𝛼𝑛(∅) =
𝑧

𝑍0
∫ 𝑔3(∅, 𝑧) ∙
𝑍0

0

𝑠𝑖𝑛 (
𝑛𝜋

𝑍0
𝑧)  𝑑𝑧 (30) 

 

Taking example of 

𝑔3(∅, 𝑧) = 𝑧
3 ∙ 𝑐𝑜𝑠 (

∅

4
) 
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Equation (30) becomes 

𝛼𝑛(∅) =
𝑧

𝑍0
∫ 𝑧3 ∙ 𝑐𝑜𝑠 (

∅

4
) ∙

𝑍0

0

𝑠𝑖𝑛 (
𝑛𝜋

𝑍0
𝑧)  𝑑𝑧 

 

𝛼𝑛(∅) =
𝑧

𝑍0
𝑐𝑜𝑠 (

∅

4
)∫ 𝑧3 ∙

𝑍0

0

𝑠𝑖𝑛 (
𝑛𝜋

𝑍0
𝑧)  𝑑𝑧 (31) 

 

Integration by part for Equation (31) yields 

 

𝛼𝑛(∅)

=
𝑧

𝑍0
𝑐𝑜𝑠 (

∅

4
) [
3 [(

𝑛𝜋
𝑍0
)
2

𝑧2 − 2] 𝑠𝑖𝑛 (
𝑛𝜋
𝑍0
𝑧) − (

𝑛𝜋
𝑍0
) 𝑧 [(

𝑛𝜋
𝑍0
)
2

𝑧2 − 6] 𝑐𝑜𝑠 (
𝑛𝜋
𝑍0
𝑧)

(
𝑛𝜋
𝑍0
)
4 ]

0

𝑍0

 

 

When 𝑧 = 0 

3[−2] 𝑠𝑖𝑛(0) − (
𝑛𝜋
𝑍0
) (0) [(

𝑛𝜋
𝑍0
)
2

𝑧2 − 6] 𝑐𝑜𝑠(0)

(
𝑛𝜋
𝑍0
)
4 = 0 

 

When 𝑧 = 𝑍0 

 

3 [(
𝑛𝜋
𝑍0
)
2

𝑍0
2 − 2] 𝑠𝑖𝑛 (

𝑛𝜋
𝑍0
𝑍0) − (

𝑛𝜋
𝑍0
) 𝑍0 [(

𝑛𝜋
𝑍0
)
2

𝑍0
2 − 6] 𝑐𝑜𝑠 (

𝑛𝜋
𝑍0
𝑍0)

(
𝑛𝜋
𝑍0
)
4  

=
3[(𝑛𝜋)2 − 2] 𝑠𝑖𝑛(𝑛𝜋) − (𝑛𝜋)[(𝑛𝜋)2 − 6] 𝑐𝑜𝑠(𝑛𝜋)

(
𝑛𝜋
𝑍0
)
4   

=
−(𝑛𝜋)[(𝑛𝜋)2 − 6] 𝑐𝑜𝑠(𝑛𝜋)

(
𝑛𝜋
𝑍0
)
4  

 

 

 

Then Equation (31) becomes 

 

𝛼𝑛(∅) =
𝑧𝑍0

3

𝑛3𝜋3
𝑐𝑜𝑠 (

∅

4
) [(𝑛2𝜋2 − 6) 𝑐𝑜𝑠(𝑛𝜋)] (32) 
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𝛼𝑛(∅) =

{
 
 

 
 𝑧𝑍0

3

𝑛3𝜋3
𝑐𝑜𝑠 (

∅

4
) (𝑛2𝜋2 − 6) for even integer 𝑛

𝑧𝑍0
3

𝑛3𝜋3
𝑐𝑜𝑠 (

∅

4
) (6 − 𝑛2𝜋2) for odd integer 𝑛

 (33) 

 

By substituting Equation (33) into Equation (29) 

 

∑[𝐶𝑚 𝑐𝑜𝑠(𝑚∅) + 𝐷𝑚 𝑠𝑖𝑛(𝑚∅)]

∞

𝑚=0

 
 

 

=

{
 
 

 
 𝑧𝑍0

3

𝑛3𝜋3
𝑐𝑜𝑠 (

∅

4
) (𝑛2𝜋2 − 6) for even integer 𝑛

𝑧𝑍0
3

𝑛3𝜋3
𝑐𝑜𝑠 (

∅

4
) (6 − 𝑛2𝜋2) for odd integer 𝑛

  

 

By comparing the coefficient of sin term,  

 

𝐷𝑚 = 0 (34) 

 

𝐷𝑚(𝑛) = 𝐽𝑚 (𝑖
𝑛𝜋

𝑍0
𝑟) ∙ 𝑑𝑚 = 0 ⇒     𝑑𝑚 = 0 

 

When ∅ = 0 

 

∑[𝐶𝑚]

∞

𝑚=0

=

{
 

 
𝑧𝑍0

3

𝑛3𝜋3
(𝑛2𝜋2 − 6) for even integer 𝑛

𝑧𝑍0
3

𝑛3𝜋3
(6 − 𝑛2𝜋2) for odd integer 𝑛

 (35) 

 

When ∅ = 2𝜋 

∑[𝐶𝑚]

∞

𝑚=0

= 0 (36) 

 

𝐶𝑚(𝑛) = 𝐽𝑚 (𝑖
𝑛𝜋

𝑍0
𝑟) ∙ 𝑐𝑚 = 0  ⇒   𝑐𝑚 = 0 
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Conclusion 
 

The mathematical equation of the 3-dimensional heat conduction equations 

for a cylindrical problem was successfully derived with 3 cases of differential 

solutions for the separation constant, 𝜆 > 0, 𝜆 = 0, and 𝜆 < 0. The initial 

condition is taken as 𝑢(𝑥, 𝑦, 𝑧, 0) = 𝑓(𝑥, 𝑦, 𝑧), where 𝑓(𝑥, 𝑦, 𝑧) is the initial 

temperature distribution and 𝑆 = {𝑥2 + 𝑦2 ≤ 𝑟2; 0 ≤ 𝑧 ≤ 𝑍0} with boundary 

curves Γ = 𝛤1⋃𝛤2⋃𝛤3, where the boundary conditions are taken as 𝑢|𝛤𝑖 =

𝑔(𝑥, 𝑦, 𝑧);    for 𝑖 = 1,2,3. The derived equation provides a mathematical 

solution to determine the heat transfer rate for a system with cryogenic pipe 

insulated with multiple layers. 
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