UNIVERSITI TEKNOLOGI MARA

ANTIBACTERIAL AND TOXICITY ACTIVITIES OF GREEN SYNTHESIZED SILVER NANOPARTICLES FROM Phyllanthus amarus EXTRACT

SITI SARA BINTI NOR AZHAR

BSc

July 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been summitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with Academic Rules and Regulations for Undergraduated, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name student	:	Siti Sara Binti Nor Azhar	
Student I.D. No	:	2016316953	
Programme	:	Bachelor of Science (Hons.) Biology	
Faculty	:	Applied Sciences	
Thesis Title	:	Antibacterial and Toxicity Activities of Green	
		Synthesized Silver Nanoparticles from	
		Phyllanthus amarus Extract	
Signature of Student	:		
Date	:	July 2019	

July 2019 :

ABSTRACT

Silver nanoparticles (AgNPs) were synthesized through an easy, rapid and eco-friendly pathway using various herb plant because of the huge values in medical bioengineering. Therefore, the aims of this study were to identify the formation of silver nanoparticles from *Phyllanthus amarus* extract, characterize it using UV-Visible spectrometer, identify the antibacterial and toxicity activities of bio-synthesized AgNPs. P. amarus was extracted and added with 1 mM of silver nitrate (AgNO₃) for 15-20 min. Then, the AgNPs synthesized from *P. amarus* extract was further characterized using UV-Visible spectrometer. The AgNPs then was tested on their antibacterial activity using disc diffusion method and toxicity activities using brine shrimp lethality assay. The result from this study, the synthesized AgNPs was noticed through the color changes from light yellow to dark brown indicated the formation of AgNPs and further confirmed by surface plasmonic resonance (SPR) band in the range of 400-450 nm using UV-Visible spectrometer. In antibacterial activity, Pseudomonas aeruginosa showed more sensitive result compared to the Bacillus subtillis towards AgNPs of P. amarus with highest zone inhibition of 11 ± 0.57 mm at 1000 µg/ml and *Bacillus sp* with zone inhibition of 10 ± 0.57 mm at 1000 µg/ml. Besides, in toxicity activity P. amarus extract and AgNPs was characterized as non-toxic class of LC₅₀ with 7979.98 and 2225.61 while the AgNO₃ showed toxic class with LC50 of 995.68. In conclusion, P. amarus extract can be used efficiently as reducing and capping agent in the production of potential antibacterial and non-toxicity of AgNPs for commercial application.

TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ABTRAK	V
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xii
LIST OF NOMENCLATURES	xiii

CHAPTER ONE: INTRODUCTION	1
1.1 Background Study	1
1.2 Problem Statement	3
1.3 Objectives of the Study	4
1.4 Significance of the Study	4

CHAPTER TWO: LITERATURE REVIEW		6
2.1	Nanotechnology	6
	2.1.1 Nanoparticle	7
	2.1.2 Silver Nanoparticle (AgNPs)	9
2.2	Synthesis of Silver Nanoparticle	9
	2.2.1 Physical Method	11
	2.2.2 Chemical Method	11
2.3	Biosynthesis of Silver Nanoparticle	12
	2.3.1 Synthesis of Silver Nanoparticle Using Plant Extract	12
	2.3.2 Synthesis of Silver Nanoparticle Using Bacteria	13
	2.3.3 Synthesis of Silver Nanoparticle Using Fungi	13
	2.3.4 Important of Silver Nanoparticle Biosynthesis	14
2.4	Benefit of Plant Extract	14

2.5 Silver Nanoparticle as Natural Antibacterial Agent		
2.6 Toxicity of Biosynthesized Silver Nanoparticle		
2.7 Characterization of Silver Nanoparticle		
2.7.1 UV-Visible Spectrometer		
CHAPTER 3: METHODOLOGY	19	
3.1 Material	19	
3.1.1 Raw material	19	
3.1.2 Chemical	19	
3.1.3 Apparatus	19	
3.2 Method	19	
3.2.1 Preparation of Phyllanthus amarus Extract	19	
3.2.2 Green Synthesis of Silver Nanoparticle	20	
3.2.3 Characterization of Silver Nanoparticle by Using	21	
UV-Visible Spectroscopy		
3.2.4 Preparation of Broth Media	21	
3.2.5 Preparation of Nutrient Agar and Muller Hinton Agar	21	
3.2.6 Streaking Culture	22	
3.2.7 Subculturing in Broth	22	
3.2.8 Kirby–Bauer Disc Diffusion Method	23	
3.2.9 Brine Shrimp Lethality Assay	23	
3.3 Statistical Analysis	24	
CHAPTER 4: RESULTS AND DISCUSSIONS	25	
4.1 Formation of Silver Nanoparticles (AgNPs) From Phyllanthus amarus	25	
Extract Using Visual Observation		
4.2 Characterization Silver Nanoparticles (AgNPs) Synthesized from	27	
Phyllanthus amarus Extract		
4.2.1 UV-Vis Spectroscopy	27	
4.3 Antibacterial Activity	28	
4.3.1 Bacterial Identification		
4.3.2 Antibacterial Efficiency	30	
4.4 Brine Shrimp Lethality Assay		