UNIVERSITI TEKNOLOGI MARA

COMPARATIVE STUDY ON BIOSORPTION OF COPPER AND ALUMINIUM IONS USING APPLE POMACE, TEA WASTE AND THEIR COMBINATION IN WATER SAMPLES OF SUNGAI ARAU, PERLIS

ATIQAH SHAHIRAH BINTI ZAINOL

Thesis submitted in partial fullfillment of the requirements for the degree of Bachelor in Science (Hons.) Biology Faculty of Applied Sciences

July 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Undergraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Atiqah Shahirah Binti Zainol	
Student I.D. No.	:	2016122711	
Programme	:	Bachelor in Science (Hons.) Biology – AS201	
Faculty	:	Applied Sciences	
Thesis Title	:	Comparative Study on Biosorption of Copper and	
		Aluminium Ions Using Apple Pomace, Tea Waste	
		and Their Combination in Water Samples of	
		Sungai Arau, Perlis	
Signature of Student	:		
Date	:	July 2019	

ABSTRACT

Heavy metal pollution in environment is a matter of global concern. This study indicate types and concentration of heavy metal ions in water samples of the study area and compare types of heavy metal in different study area and effectiveness of apple pomace and tea waste as unmodified absorbent which is no addition of chemicals into water samples. Four heavy metals ions such as Cu, Zn, Al and Mg can be observe during initial screening of water samples by using inductively coupled plasma optical emission spectrometry (ICP-OES). Apple pomace and tea waste will dry in oven and different weight of unmodified absorbent will apply into water samples. Combination of absorbent will be observe in this study. Water samples will be rescreening to determine effectiveness of apple pomace, tea and combination of both absorbents. Functional group of absorbent that contribute to absorption of heavy metal will determine by using FTIR analysis. Overall from this study can conclude apple pomace, tea waste and combination of absorbents are effective in reducing heavy metal in freshwater because it contain C=O functional group that corresponding to lignin and hemicellulose components that able to absorb heavy metal. The adsorbents have higher capabilities on adsorbing Cu compared to Al since the range of adsorption percentage of Cu is higher approximately at 24-78% compared to Al approximately at 6-11%. Apple pomace individually performed better with highest percentage adsorption at the range 68-78%. Tea waste is more favourably adsorbed Cu and Al than others as the q_{max} is greater than 1. Other than that, Langmuir model describes adsorption more successful for Cu and Al by apple pomace and tea waste respectively. However, Freundlich model describes adsorption more successful for Al and Cu by apple pomace and tea waste respectively. Moreover, Freundlich model describes adsorption more successful than Langmuir model for Cu and Al by combination of apple pomace and tea waste. In addition, T-Test results show that only Cu adsorption by apple pomace has no significance differences where p value recorded p > 0.05 while other metal ions adsorption has significance differences where p value recorded p < 0.05.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS		
AUTHOR'S DECLARATION	iii iv v vi	
ABSTRACT		
ABSTRAK		
ACKNOWLEDGEMENT		
TABLE OF CONTENTS		
LIST OF TABLES	ix	
LIST OF FIGURES	x xii xiii	
LIST OF SYMBOLS		
LIST OF ABBREVIATIONS		
CHAPTER ONE: INTRODUCTION	I	
1.1 Background of Study	1	
1.2 Problem Statement	2	
1.3 Significance of the Study	3	
1.4 Objectives of the Study	3	
CHAPTER TWO: LITERATURE REVIEW	4	
2.1 World Water Quality	4	
2.2 Heavy Metal in Water	7	
2.3 Biological Waste as Biosorbent	9	
2.3.1 Apple as Biosorbent	12	
2.3.2 Tea Waste as Biosorbent	13	
CHAPTER THREE: RESEARCH METHODOLOGY	17	
3.1 Study Area	17	
3.2 Collection and Preparation of Water samples		
3.3 Preparation of Biosorbent	18	
3.4 Fourier-Transfrom Infrared Spectroscopy (FTIR) Analysis	19	

3.5 Screening Water Samples		
3.6 Apply Sorbent		
3.7 Re-screening Water samples		
3.8 Biosorpton Isotherm Analysis		21
3.9 T-Test U	Jsing SPSS	21
CHAPTER	FOUR: RESULT AND DISCUSSION	23
4.1 Apple P	omace as Biosorbent	23
4.1.1	FTIR Analysis	23
4.1.2	Adsorption Analysis	24
4.1.3	Biosorption Isotherm Analysis	26
4.1.4	Paired T-Test	29
4.2 Tea Waste as Biosorbent		29
4.2.1	FTIR Analysis	29
4.2.2	Adsorption Analysis	31
4.2.3	Biosorption Isotherm Analysis	33
4.2.4	Paired T-Test	35
4.3 Combin	ation of Apple Pomace and Tea Waste as Biosorbent	36
4.3.1	Adsorption Analysis	36
4.3.2	Biosorption Isotherm Analysis	37
4.3.3	Paired T-Test	40
CHAPTER	FIVE: CONCLUSION AND RECOMMENDATION	42
REFERENCES		44
APPENDICES		48
AUTHOR'	S PROFILE	52