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ABSTRACT 

 

In this paper, an effective two stage multi-response optimization technique 

(i.e. grey relational analysis coupled with Taguchi technique) has been 

applied to achieve a better performance characteristic in wire-cut electrical 

discharge machining (WEDM) process. A zinc coated brass wire of 0.25 mm 

diameter was used as tool electrode for machining a D2 tool steel specimen. 

Experiments were planned according to Taguchi’s L9 orthogonal array 

under different cutting parameters such as: pulse on time (TON), pulse off 

time (TOFF), peak current (IP) and wire feed rate (WF). The three quality 

characteristics (i.e. performance characteristics), namely cutting rate, kerf 

width and surface roughness have been simultaneously optimized in two 

different stages. It wasobserved that the cutting speed is increased by 

24.60% compared to first stage/primary optimization process. From the 

analysis of variance (ANOVA), pulse-on time is found to be the most 

influencing cutting parameter having 74.91% contribution towards overall 

performance of the WEDM process. Finally,a confirmatory experiment has 

been carried out at optimum set of cutting parameters obtained from the 

precision optimization stage to identify the effectiveness of this proposed 

method. It was observed that the predicted values of the responses obtained 

from regression models were in good agreement with the experimental 

findings. 

 

Keywords: Taguchi technique, WEDM, orthogonal array, grey relational 

analysis, ANOVA 
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Introduction 
 

In the present manufacturing scenario, Wire-cut Electric Discharge 

Machining (WEDM) has grown tremendously in the field of electronics, 

aerospace, automobile, tool and dies industries owing to its high performance 

and capability of  machining any conductive material (regardless of its 

hardness) into any complex and irregular shape by using a flexible thin metal 

wire as an electrode [1]. In this unconventional machining operation material 

is removed by generating repetitive spark discharges between the gap of wire 

electrode and workpiece immersed in a liquid dielectric medium. A metal 

wire of small diameter is continuously fed from the supply spool to the 

workpiece by constantly maintaining a gap of 0.025-0.05 mm between the 

workpiece and wire and the used wire is collected in the collection tank 

provided at the bottom of the machine [2].  

Guo et al. adopted orthogonal design to determine the main cutting 

parameters that affect the cutting rate and surface roughness when machining 

Al2O3 particle-reinforced (6061 alloy) material at different machining 

conditions [3]. Tosun et al. optimized the effects of machining parameters on 

kerf width and MRR by using statistical regression models and ANOVA 

technique [4]. Hewidy et al. used the technique of response surface 

methodology (RSM) for determining optimal parameters setting in the 

WEDM process of Inconel 601 material [5]. Sarkar et al. formulated an 

additive model of the WEDM process to predict the most influencing cutting 

parameter by using constrained optimization and Pareto optimization 

algorithm [6]. Chiang and Chang applied grey analysis technique to evaluate 

the multiple performance characteristics of the WEDM process for Al2O3 

particle reinforced material [7]. Yuan et al. proposed a Gaussian process 

regression model approach to optimize high speed wire electric discharge 

machining process [8]. Ramakrishnan and Karunamoorthy developed an 

artificial neural network (ANN) model and used multi-response signal-to-

noise (MRSN) ratio method to predict the optimal performance 

characteristics of WEDM process [9]. Chen et al. proposed a method 

integrating back propagation neural network (BPNN) and simulated 

annealing algorithm (SAA) to study the effect of cutting parameters on 

cutting velocity and surface finish properties at various operating conditions 

[10]. Mukherjee et al. implemented six non-traditional optimization 

algorithms i.e. genetic algorithm (GA), sheep flock algorithm, ant colony 

optimization (ACO), particle swarm optimization (PSO), artificial bee colony 

(ABC) and biogeography based optimization for single and multi-objective 

attributes of WEDM process [11]. Nourbakhsh et al. adopted Taguchi’s 

orthogonal design of experiment to investigate the effect of various process 

parameters on WEDM performance characteristics such as cutting speed, 

wire rupture and surface integrity of Ti6Al4V using different wire electrode 

materials [12]. Sharma et al. designed an experimental design based on one 
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factor at a time (OFAT) approach for evaluating the effect of various control 

factors such as servo voltage, pulse on time, pulse off time, servo feed, wire 

feed and flushing pressure on WEDM performance characteristics, namely, 

MRR and SR of Inconel 706 alloy component [13]. Gurupavan et al. used 

pulse-on-time, pulse-off-time, current and bed speed as machining 

parameters for evaluating surface roughness, accuracy, volumetric material 

removal rate and electrode wear. ANN model was developed to predict 

performance parameters and they observed a good correlation between the 

predicted and experimental result [14].  

From the study of past research works, it is found that a lot of research 

works have already been carried out in the field of WEDM technology by 

using numerous multi-response optimization techniques. However, a few 

published papers are available on machining of D2 steel with multi-objective 

performance optimization. D2 steel is a high-carbon, high-chromium, air-

hardening tool steel having great wear and abrasion resistant properties. This 

is mostly used for making blanking or forming dies and thread rolling dies. In 

this study, three response variables, namely cutting rate (Vc), kerf width (Kw) 

and surface roughness (Ra) have been optimized in two stages to obtain better 

performance in machining of D2 steel by using Taguchi-based grey relational 

analysis (GRA) technique. This combined Taguchi-GRA approach eases in 

obtaining optimal cutting parameters setting as numerical value of grey 

relational grades by considering correlation of response characteristics [15]. 

 

 

Methodology 
 

This research work uses Grey relational analysis (GRA) method coupled with 

Taguchi’s parametric design approach to determine the optimum parametric 

combination for achieving best surface quality (Ra) with optimum cutting rate 

(Vc) and minimum kerf width (Kw). According to Taguchi based 

methodology, the control factors/cutting parametersare categorised into three 

types, i.e. the smaller the better, the larger the better and nominal the best. 

Since each performance characteristic may not have the same impact on the 

process, therefore, for solving such multiple response optimization problems 

following analytic processing steps are used. 
 

Step 1: Determination of loss function (Lij) of each performance 

characteristics as follows, 

(a) For smaller the better, 



n
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y
2
ijk

n

1
Lij  (1) 
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(b) For larger the better, 



n

1k y
2
ijk

1

n

1
Lij  

   (2) 

where, n represents number of repeated experiments and yijk represents the 

experimental value of the jth response variable in ith trial at kth replication. 

 

Step 2: Determination of S/N ratio (𝜂𝑖𝑗 ) value for each performance 

characteristics as given below, 

Lijlog10 ij
 

 

(3) 

 
Step 3: Computation of normalised S/N ratio (𝑌𝑖𝑗 ) values for all the responses 

for all the trials as follows: 

(a) For larger the better: 

η
min
jη

max
j

η
min
jηij

Y ij



  

(4) 

(b) For smaller the better: 

η
min
jη

max
j

ηijη
max
j

Y ij



     (5) 

  

where,  𝜂𝑗
𝑚𝑖𝑛 = min {η1j, η2j ..... ηmj} and 𝜂𝑗

𝑚𝑎𝑥  = max {η1j, η2j ..... ηmj}. Using 

the above equations, all the responses are linearly normalised in the range 

between zero and one. 

 

Step 4: Determination of the grey relational coefficients (GRC), 𝛾𝑖𝑗  i.e. 

𝛾𝑖𝑗 =
Δ𝑗

𝑚𝑖𝑛 + 𝜉Δ𝑗
𝑚𝑎𝑥

Δ𝑖𝑗 + 𝜉Δ𝑗
𝑚𝑎𝑥  

(6) 

  

where, Δ𝑖𝑗 =  1 − 𝑌𝑖𝑗  , Δ𝑗
𝑚𝑖𝑛  = min{ Δ1𝑗 , Δ2𝑗 ,.... , Δ𝑚𝑗 }, Δ𝑗

𝑚𝑎𝑥  = max{Δ1𝑗 , 

Δ2𝑗 ,.... , Δ𝑚𝑗 }. 𝜉 is the distinguishing coefficient (𝜉∈[0,1]). 

 

Step 5: Calculation of the grey relational grade (GRGi) for ith trial as follows, 

𝐺𝑅𝐺𝑖 =  𝑤𝑗 𝛾𝑖𝑗

𝑝

𝑗=1

 

(7) 

 

where, 𝑤𝑗  is the weight for the jth response, and 𝑤𝑗 = 1
𝑝
𝑗=1 . 
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In this study, attempts have been made to determine the influence of 

four cutting parameters, i.e. pulse on time (TON), pulse off time (TOFF), peak 

current (IP) and wire feed rate (WF) on the multiple performance 

characteristics by using analysis of variance (ANOVA). At last, a 

confirmatory experiment has been conducted at optimal parametric 

combination to validate the current study. 

 

Experimental details 
In the present research work, D2 tool steel of 12 mm thickness was used as 

work material for experimentation. The chemical composition of workpiece 

is listed in Table 1. A 0.25 mm diameter zinc coated brass wire was used as 

tool electrode. Experiments were carried out on CNC wire cut EDM machine 

(ECOCUT ELPULS 15) as shown in Figure 1. WEDM machine specification 

is illustrated in Table 2. 
Based on detailed literature survey, four cutting parameters such as: 

TON, TOFF, IP and WF were chosen to find out how these parameters affect 

Vc, Ra and Kw of D2 tool steel. Each parameter is varied in three levels, 

denoted as low, medium and high level respectively. Table 3 represents the 

four cutting parameters and their levels. Experiments were planned according 

to Taguchi’s L9 orthogonal array. 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1: Experimental set up. 
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Table 1: Chemical composition of D2 tool steel 

 

Element Weight percentage (%) 

C 1.55 

Mn 0.6 

Si 0.6 

Cr 11.8 

Ni 0.3 

P 0.03 

S 0.03 

Mo 0.8 

V 0.8 

Co 1 

Cu 0.25 

Fe Balance 

 

Table 2: WEDM machine(ECOCUT ELPULS 15) specifications 

 

Cutting parameter Symbol Range 

Pulse on time TON 000-131 

Pulse off time TOFF 00-63 

Peak current IP 00-12 

Pulse peak voltage VP 1 or 2 (Not used in ELPULS 15) 

Water dielectric flushing 

pressure 

WP 0-Low pressure 

Wire feed rate WF 01-15 

Wire tension WT 01-15 (Not used in ELPULS 15) 

Spark gap voltage SV 00-99 

Servo feed SF 0000-0990 (Normal feed) 

1000-1999 (Constant feed) 

2000-2999 (Constant voltage) 

Corner control factor CC Not used in ELPULS 15 

Cutting speed override % CS% 100 

  

Table 3: Cutting parameters and their levels 

 

Parameter Unit Symbol Level 

1 2 3 

Pulse on time (TON) µs A 105 110 115 

Pulse off time (TOFF) µs B 30 40 50 

Peak current (IP) Amp C 10 11 12 

Wire feed rate (WF) mm/min D 4 6 8 
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Using different levels of the cutting parameters as shown in Table 3, 

nine experiments were conducted. In each experiment, a 5 mm width of work 

material was made to cut and machining time for each trial was measured 

using a stop watch. The cutting rate (Vc) for WEDM operation was 

calculated using Equation (8) as shown below: 

(mm/min)
t

L
Vc 

 
(8) 

where L is the length of the slot in mm and t is the machining time in min. 

The kerf width (Kw) was measured using scanning electron microscope. 

While a 2D portable surface profilometer (Talysurf, Surtronic 3+) with 0.8 

mm cut off value was used to measure the surface roughness (Ra).The surface 

roughness value was measured on three different locations of each machined 

specimen by keeping it on a flat surface. The experimental results are 

illustrated in Table 4. 

 

Table 4: Experimental results (first stage of experimentation) 

 

 

Results and Discussions 
 

In this section, the experimental data given in Table 4 are analysed by using 

the grey relational analysis technique (GRA) which is described in the earlier 

section. In this study, cutting rate (Vc) is addressed as the larger-the-better 

type problem as larger value of Vc indicates better performance while smaller 

values of surface roughness (Ra) and kerf width (Kw) indicate better 

machining performance and thus treated as smaller-the-better type problems.  

 

 

 

Expt 

no. 

TON 

µs 

TOFF 

µs 
IP, 

Amp 

WF, 

mm/ 

min 

Vc, 

mm/ 

min 

Kw, 

mm 

Ra(μm) 

Ra1 Ra2 Ra3 

1 105 30 10 4 0.261 0.35 0.9

8 

1.12 1.38 

2 105 40 11 6 0.193 0.51 1.1

2 

1.18 1.1 

3 105 50 12 8 0.759 0.42 0.7 1.12 0.76 

4 110 30 11 8 0.217 0.47 1.0

6 

1.08 1.34 

5 110 40 12 4 1.961 0.37 1.0

7 

1.11 1.18 

6 110 50 10 6 0.125 0.5 1.4

8 

1.36 1.14 

7 115 30 12 6 0.259 0.55 0.7

8 

0.74 0.7 

8 115 40 10 8 0.202 0.48 0.7

9 

0.8 0.82 

9 115 50 11 4 0.133 0.44 1.1 0.6 0.66 
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First stage optimization of multiple performance characteristics 
First step in data analysis is to find out the quality losses of all the response 

variables using Equation (1) and Equation (2) as applicable. Then Equation 

(3) was applied to transform the loss functions into signal-to-noise (S/N) 

ratios. The corresponding S/N ratio values of the three response variables are 

shown in Table 5. 

 

Table 5: Signal-to- noise (S/N) ratio values 

 

Expt. no. Signal-to-noise ratio values (ηij) 

Vc Kw Ra 

1 -11.6672 9.1186 -1.3769 

2 -14.2889 5.8486 -1.0911 

3 -2.3952 7.5350 1.1126 

4 -13.2708 6.5580 -1.3413 

5 5.8496 8.6360 -0.9915 

6 -18.0618 6.0206 -2.5039 

7 -11.734 5.1927 2.6069 

8 -13.893 6.3752 1.9010 

9 -17.523 7.1309 1.7488 

 
The S/N ratio values of cutting rate were then normalised using 

Equation (4) while for surface roughness and kerf width Equation (5) was 

used. Basically, larger value of normalised data indicate better performance 

characteristic, and the best normalised result should be equal to 1. Next, in 

order to express the relationship between the optimal and actual normalised 

experimental results, the grey relational coefficients were calculated by using 

Equation (6). In this study, all the four cutting parameters are considered to 

be equally influencing the VC, Kw and Ra. So, the distinguishing coefficient 𝜉 

is taken as 0.5 in Equation (6). Then, the grey relational grade was calculated 

by using Equation (7). Table 6 shows the values of GRC and GRG for each 

experiment. A higher value of GRG indicates a better performance as the 

corresponding result is closer to the ideal normalised value. In this way, the 

multi response optimization problem has been transformed into a single 

process performance index using the combination of grey relational analysis 

and Taguchi method. 
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Table 6: Grey relational coefficient (GRC) and Grey relational grade (GRG) 

values 

 

Expt. 

no. 

GRC, 𝛾𝑖𝑗  GRGi 
Vc Kw Ra 

1 0.405 0.3333 0.6940 0.4776 

2 0.372 0.7496 0.6440 0.5887 

3 0.591 0.4559 0.4140 0.4873 

4 0.384 0.5898 0.6873 0.5539 

5 1.000 0.3631 0.6282 0.6638 

6 0.333 0.7034 1.0000 0.6789 

7 0.404 1.0000 0.3333 0.5794 

8 0.377 0.6241 0.3671 0.4561 

9 0.338 0.5032 0.3753 0.4056 

 
Since the experimental design is orthogonal, it is possible to separate 

out the effect of each machining parameter at different factor levels. The 

calculated mean GRG values of each machining parameter at three different 

levels are shown in Table 7. The optimal level combination can then be 

easily determined by examining the values of level averages (as shown in 

Table 7) of various factors. Basically, a larger value of GRG (boldfaced in 

Table 7) signifies better performance characteristic. The optimal cutting 

conditions for the factors A, B, C and D with respect to GRG is found to be 

A2B2C3D2 i.e. a pulse on time of 110 μs, a pulse off time of 40 μs, a peak 

current of 12 A and a wire feed rate of 6 mm/min can be recommended as 

optimal cutting parameters for the WEDM operation. 

 

Table 7: Response table for the grey relational grade (GRG) 

 

Symbol Parameters Mean GRG Max-

M

i

n 

Level 1 Level 2 Level 3 

A TON 0.5179 0.6322 0.5715 0.1143 

B TOFF 0.5370 0.5695 0.5239 0.0456 

C IP 0.5376 0.5161 0.5768 0.0607 

D WF 0.5157 0.6156 0.4991 0.1165 

Total mean GRG= 0.5511 

 

Precision/second stage optimisation of performance 
characteristics 
In order to get better performance characteristics, the optimum cutting 

parameters (i.e. A2B2C3D2) obtained in the previous section are again divided 

into three neighbouring values except for the peak current value. Due to some 
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machining constraints the peak current could not be varied further (i.e. 12 

Amp is the maximum peak current for ECOCUT ELPULS 15 WEDM 

machine). Table 8 shows the precised levels of cutting parameters. Again 

experiments were planned according to L9 orthogonal array keeping the 

optimal peak current value constant at 12 A and the experimental findings are 

illustrated in Table 9. 

 

Table 8: Precised levels of cutting parameters 

 

Cutting Parameter Unit Symbol Level 

1 2 3 

Pulse on time (TON) Μs A 108 110 112 

Pulse off time (TOFF) Μs B 38 40 42 

Wire feed rate (WF) mm/min D 5 6 7 

 

 Again following the same procedure as described earlier, the 

experimental data given in Table 9 were analysed and the values of S/N ratio, 

grey relational coefficient and grey relational grades are shown in Table 10 

and Table 11, respectively. 
 

Table 9: Results of second stage experimentation 

 

Expt. 

no. 
TON TOFF WF Vc Kw 

Ra 

Ra1 Ra2 Ra3 

1 108 38 5 0.947 0.36 1.04 1.09 1.15 

2 108 40 6 0.845 0.39 1.17 1.06 1.03 

3 108 42 7 0.723 0.34 1.41 1.48 1.52 

4 110 38 6 1.046 0.38 1.88 2.08 1.8 

5 110 40 7 1.059 0.35 1.68 1.71 1.73 

6 110 42 5 0.895 0.36 1.76 1.64 1.79 

7 112 38 7 1.16 0.39 2.02 1.98 1.94 

8 112 40 5 1.025 0.38 1.88 1.98 1.86 

9 112 42 6 1.071 0.37 1.9 2 2.08 
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Table 10: S/N ratio values of second data set 

 

Expt. no. Signal-to-noise ratio values (ηij) 

Vc Kw Ra 

1 -0.4730 8.8739 -0.7824 

2 -1.4629 8.1787 -0.7352 

3 -2.8172 9.3704 -3.3505 

4 0.3906 8.4043 -5.6823 

5 0.4979 9.1186 -4.6436 

6 -0.9635 8.8739 -4.7670 

7 1.2892 8.1787 -5.9345 

8 0.2145 8.4043 -5.6088 

9 0.5958 8.6360 -5.9975 

 

Table 11: Grey relational coefficient (GRC) and Grey relational grade (GRG) 

values 

 

Expt. no. 
Grey relational coefficient, 𝛾𝑖𝑗  Grey relational 

grade (GRGi) Vc Kw Ra 

1 0.5381 0.4615 0.3353 0.4450 

2 0.4273 1.0000 0.3333 0.5869 

3 0.3333 0.3333 0.4985 0.3884 

4 0.6956 0.7253 0.8930 0.7713 

5 0.7218 0.3880 0.6603 0.5900 

6 0.4768 0.4615 0.6814 0.5399 

7 1.0000 1.0000 0.9766 0.9922 

8 0.6564 0.7253 0.8713 0.7510 

9 0.7476 0.5658 1.0000 0.7711 

 
 Next, the précised optimal level combination was determined to be 

A3B1D2 by evaluating mean GRG value of each cutting parameter at three 

different levels as given in Table 12. 

 

Table 12: Level averages of the factors 

 

Symbol Parameters 
Mean GRG Max-Min 

Level 1 Level 2 Level 3  
A Pulse on time (TON) 0.4734 0.6337 0.8381 0.3647 
B Pulse off time (TOFF) 0.7362 0.6426 0.5665 0.1697 
D Wire feed rate (WF) 0.5786 0.7031 0.6569 0.1245 

Total mean GRG = 0.6477 
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Comparison of both the optimum parameter settings 
Figure 2 illustrates the variation of mean grey relational grades with the 

different levels of cutting parameters for both primary and precision 

optimization (refer to Table 7 and Table 12 respectively). From Figure 2, it is 

clearly seen that higher values of GRGs are obtained in the second stage 

optimization i.e. precision optimization and it indicates that the precision 

optimization leads to better performance characteristics as compared to single 

stage/primary optimization because higher the value of GRG better is the 

machining output. 

A1 A2 A3 -- B1 B2 B3 -- C1 C2 C3 -- D1 D2 D3

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
e
a

n
 G

R
G

 Primary Optimization

 Precision Optimization

Pulse-on time Pulse-off time Peak Current Wire feed rate

 
Figure 2: Variation of GRG with different levels of process parameters. 

Regression analysis 
Regression models for Vc, Kw and Ra have been developed (for both first and 

second stage optimization) to predict the correlation between the cutting 

parameters and the respective response characteristic. The following 

equations are obtained from multiple regression analysis: 

 

a) First stage optimization: 

 

𝑉𝐶 = −1.26− 0.0206𝑇𝑂𝑁 + 0.0047𝑇𝑂𝐹𝐹 + 0.399𝐼𝑃 − 0.098𝑊𝐹 (9) 

𝐾𝑤 = −0.359 + 0.00633𝑇𝑂𝑁 − 0.00017𝑇𝑂𝐹𝐹 + 0.0017𝐼𝑃 + 0.0175𝑊𝐹 (10) 

𝑅𝑎 = 5.24− 0.0273𝑇𝑂𝑁 − 0.0013𝑇𝑂𝐹𝐹 − 0.0950𝐼𝑃 − 0.0208𝑊𝐹 (11) 
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b) Precision/Second stage optimization: 

𝑉𝐶 = −4.35 + 0.062𝑇𝑂𝑁 − 0.039𝑇𝑂𝐹𝐹 + 0.012𝑊𝐹 (12) 

𝐾𝑤 = 0.131 + 0.004𝑇𝑂𝑁 − 0.005𝑇𝑂𝐹𝐹 − 0.003𝑊𝐹 (13) 

𝑅𝑎 = −19.9 + 0.186𝑇𝑂𝑁 + 0.017𝑇𝑂𝐹𝐹 + 0.072𝑊𝐹 (14) 

 It is observed that in the first stage of optimization, the set of optimum 

cutting parameters are A2B2C3D2 (i.e. TON = 110 µs, TOFF = 40 µs, IP = 12 

Amp and WF = 6 mm/min) and in the second stage of optimization (i.e. 

precision optimization), the set of optimum cutting parameters are A3B1D2 

(i.e. TON = 112 µs, TOFF = 38 µs and WF = 6 mm/min). Using the 

corresponding regression equations, the cutting speed, kerf width and surface 

roughness are compared between both the stages of optimization and the 

results are shown in Table 13. It is observed that the cutting speed is 

increased by 24.60% due to application of precise optimization technique. 

However, the kerf width is improved by 2.78% with a decrease in surface 

roughness value. Hence it is found that with a slight increase in kerf width 

and surface roughness, the cutting speed is tremendously improved due to 

precision optimization as compared to first stage optimization. So going for 

precise optimization is justified and essential. 

 

Table 13: Comparative results of regression analysis 

 

 
Initial cutting 

Parameters 

Optimal cutting parameters 

First stage 

optimization 

Precision 

optimization Level → A1B1D1 A2B2C3D2 A3B1D2 

Vc 0.947 0.862 1.18 

Kw 0.36 0.45 0.37 

Ra 1.09 0.92 2.01 

 
Analysis of Variance (ANOVA) 
In order to investigate the significance of each process parameter towards the 

multiple WEDM performance characteristics, analysis of variance (ANOVA) 

is applied, which is measured by the sum of squared deviations from the total 

mean of GRG. In ANOVA analysis, a F-test is conducted where the F-ratio 

value represent the percentage contribution of different cutting factors. A 

higher value of F-ratio indicates that any small variation in the respective 

cutting parameter can significantly affect the performance. Table 14 shows 

the results of ANOVA analysis. From the results, TON is found to be the most 

influencing factor with highest F-value (8.429) and percentage contribution 

(74.91%) towards the performance measures, followed by TOFF (contributing 
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16.2%). Since WF has lowest F value and percentage contribution (i.e. 8.89), 

it is considered to be statistically insignificant. 

 

Table 14: Results of ANOVA 

 

Sources of 

variance 
SSf DOF SSm F P (%) 

TON 0.2005 2 0.1002 8.4290 74.91 

TOFF 0.0434 2 0.0217 1.8227 16.20 

WF 0.0238 2 0.0119 1.0000 8.89 

Error WF 2 - - - 

Total 0.5625 8 - - 100.00 

 

Validation of the precision optimization process 
The final step is to validate the optimum cutting parameters by performing 

confirmatory experiment. Table 15 shows the comparison of the predicted 

machining performances with the actual values obtained from the 

confirmatory experiment conducted at the optimal level of cutting parameters 

i.e. A3B1D2. Based on the experimental confirmation it is observed that, the 

cutting rate is increased by 34.11% and the kerf width is also improved by 

5.56% as compared to initial parameters settings (i.e. A1B1D1). In order to 

assess the prediction accuracy of the mathematical model developed from 

regression analysis, percentage error is calculated (Table 16). For all the three 

responses percentage error is less than 10%. Hence, the proposed 

methodology is efficient and effective for optimizing multiple performance 

characteristics in WEDM process [15, 16]. 

 

Table 15: Results of the confirmatory experiment 

 

 
Initial cutting 

Parameters 

Optimal cutting parameters 
Prediction Experiment Error percentage 

(%) Level 

→ 

A1B1D1 A3B1D2 A3B1D2 

Vc 0.947 1.18 1.27 7.63 
Kw 0.36 0.37 0.34 8.11 
Ra 1.09 2.01 1.94 3.48 

GRG 0.4450  0.6586  
Improvement of GRG = 0.2136  
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Conclusion 
 

The present research work has been focused on two stage multi-response 

optimization technique by using grey-Taguchi technique to achieve better 

performance characteristics in wire-cut EDM. The following conclusions 

have been obtained from the above study: 

1. A pulse-on time of 112 μs, a pulse-off time of 38 μs, a peak current of 12 

Amp and a wire feed rate of 6 mm/min, are recommended as the optimal 

cutting parameters for this WEDM process. 

2. By following the precision optimization technique, cutting speed is 

significantly increased by 34.11% compared to primary optimization 

technique. 

3. From the ANOVA analysis, pulse-on time is found to be the most 

significant cutting parameter having 74.91% contribution towards overall 

performance. Similarly, wire feed rate is the least significant cutting 

parameter having 8.89% contribution towards overall performance. 

In order to achieve manufacturing quality and production objectives 

this proposed Taguchi-GRA precision optimization methodology may be 

used as standard in industrial as well as academic application. Production 

cost and time may also be reduced to a great extent. Further studies can be 

carried out by analysing the influence of other cutting parameters such as 

wire tension, wire diameter, wire types, dielectric fluid concentration on heat 

affected zone, surface crack density and recast layer thickness of the 

machined surface. This study is limited with the use of Zinc coated brass 

wire only. 
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