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ABSTRACT 

 
This paper concerns with vibration suppression control for three inertia 
resonance system which can be used as the model for many moving 
mechanisms widely used in industry such as steel rolling mills, flexible arms, 
large-scale space structures, etc. Since the mechanical resonance which 
causes vibration is unavoidable, especially at high speed operation, vibration 
suppression plays a key role in improving the accuracy of the system. In this 
research, a linear quadratic regulator-based speed controller with an 
integrator that can effectively suppress the torsional vibration is applied to 
control the system. Instead of using conventional state observer that is 
sensitive to noise and model uncertainties, the extended state observer is used 
to overcome the disturbance and uncertainty problems. Moreover, this 
observer also gives us the load torque information that is used to improve the 
load response. Simulation results show the effectiveness of the proposed 
controller. In addition, the comparison to conventional PID controller also be 
done to verify the advantages of the proposed approach. 
 
Keywords: Three inertial system; extended state observer; linear quadratic 
regulator; vibration suppression 
 
 
Introduction 
 
Nowadays, high precision and fast response motor driver systems are widely 
used in industry such as steel rolling mill, robot manipulator, electrical vehicle, 
etc. Generally, these moving mechanisms can be regarded as multi-inertia 
systems with several inertia moments, gears and springs. Theoretically, 
vibration is unavoidable in above mentioned systems where motion is involved 
due to the mechanical resonance. For most motions, conventional 
proportional-integral-differential (PID) controller is sufficient to meet the 
desired requirements due to the fact that the nature frequency of the mechanical 
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system is quite high in comparison with the motion maneuver. However, for 
applications where both fast dynamic and high precision positioning are 
required, vibration suppression plays a key role in improving the system 
performance.  

To deal with the vibration problem, most researches treat the motion 
mechanism as a 2-inertia system which comprised of mass, spring and 
damping. Then, various control methods are employed to suppress the 
vibration such as resonant ratio control [1], state feedback control [2,3], linear 
quadratic Gaussian (LQG) control [4,5], linear quadratic control with extended 
state observer (ESO) [6], active disturbance rejection control [7], fractional 
order PID-k controller [8], model predictive control [9], back-stepping position 
control [10], adaptive speed control [11]. Since the simplified model and the 
real system may be different in the number of resonant frequencies, i.e., the 
number of links of a manipulator is three or more, the effectiveness of the 
control system based on the 2-inertia model may be degraded in practice. 

To further improve the system performance in term of vibration 
suppression, multi inertia model, i.e., three and more inertia system, is 
considered [12]. In [13], a three-inertia system is controlled by using PI/PID 
control. In addition, a modified integral plus proportional plus derivative (m-
IPD) controller is used to suppress vibration in 3-inertia system. Fuzzy 
controller with differential evolution is also employed to control this 3-inertia 
system [12]. Despite of improved performance, the tuning procedure of the 
aforementioned methods are quite complicated due to the presence of the 
modeling error and uncertainties.  

In this research, a linear quadratic regulator (LQR) control with an 
extended state observer (ESO) is proposed to handle the vibration problem of 
the 3-inertia system. The proposed method is not only effective in torsional 
vibration suppression but also robust against parameters variation since the 
ESO is employed to estimate the immeasurable state variables and load 
disturbance. In advanced, the tuning procedure of the method is simplified 
which plays a very importance role in practical applications. Particularly, the 
method can also be extended to higher order inertia systems. 

To this end, the paper is organized as follows. The mathematical model 
of the 3-inertia system is introduced in section II. Section III shows the design 
procedure of the ESO and the LQR. Numerical simulations which verify the 
validity and effectiveness of the proposed strategy are shown in section IV. 
The conclusions are shown in the last section of the paper.  

 
 

Three-Inertia System Model 
 
A typical 3-inertia system, which consists of three rigid inertias and two 
torsional shafts, is shown in Figure 1. 
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Figure 1: Three inertial system. 
 

In this figure, wm is the motor angular speed, wL1 is the angular speed 
of load 1, wL2 is the angular speed of load 2, Jm is the motor inertia, JL1 is the 
inertia of load 1, JL2 is the inertia of load 2, Tm is the motor torque, TL is the 
load torque, T12 is the torsional torque of shaft 1, T23 is the torsional torque of 
shaft 2, Ks1 is the stiffness of shaft 1 and Ks2 is the stiffness of shaft 2. The 3-
inertia system can be modeled by the following equations: 
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Equation (1) can be rewritten in state-space form as: 
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𝐶 = [1 0 0 0 0]; 
 

From Equation (2), the transfer function from Tm to wm is: 
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In which, wa1, wa2 are anti-resonant frequencies and wr1, wr2 are resonant 
frequencies of the system and are given by. 
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These resonant frequencies cause vibrations and therefore degrade the 

system performance. The controller must be designed not only for 
speed/position tracking, but also for vibration suppression. 

 
 

Control of 3-Inertia System 
 
State and Disturbance Observer 
To implement the state feedback controller, all the state variables should be 
known. However, not all state variables are available for measure because of 
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the high cost, mounting constraints or noise. In this case, a state observer is a 
good solution to estimate the immeasurable state variables. In this paper, the 
ESO [14] is chosen because of its better performance over other observers such 
as high-gain and sliding-mode observers in term of robustness against 
disturbance.  

Consider the fifth order system (2), in order to estimate the states and 
loads disturbance of this system by the ESO, the following transformation 
matrix T is employed: 
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Let 𝑥∗ = 𝑇8%𝑥. Then, Equation (2) can be written as: 
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with 
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By treating a(t) = x6*(t) as an augmented state variable, h(t) as the 
derivative of a(t) which is unknown, the system state-space model in Equation 
(10) becomes: 
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To estimate the new states variable	𝑥∗, the following ESO is used: 
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where 𝛽< (i=1,..,6) are observer gains, 𝑧< (i=1,..,6) are estimated values of 𝑥<∗, 
and 𝑔<(𝑒) (i=1,..,6) can be either linear or nonlinear functions. In this paper, 
𝑔<(𝑒) = 𝑒 is chosen. With appropriate values of	𝛽<, the estimation of 𝑥<∗ and 
the system states 𝑥N = 𝑇𝑥N∗ can be obtained. Then the estimation of load torque 
𝑇O) can be determined by 
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Controller Design 
To extend the bandwidth of the motion mechanism, vibration caused by 
mechanical resonant must be suppressed. Besides, other requirements of a 
standard controlled system such as stability, minimal tracking error, etc., must 
also be fulfilled. To achieve the aforementioned goals simultaneously, a state 
feedback control with an extended integral of error state variable is utilized to 
eliminate the steady-state error. The design procedure is as followings.  
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The block diagram of the state feedback control system is shown in 
Figure 2 in which Ki is the integral gain, Kd is feed forward gain to compensate 
the load torque, and F = [f1 f2 f3 f4 f5] is the state feedback gain. 

 
 

 
 

Figure 2: Proposed controller schema 
 
In order to determine the integral gain and the state feedback gain, we 

first define a new state variable S as: 
 

𝑆 = ∫ (𝜔! −𝜔∗$
= )𝑑𝜏     (15) 

 
Then, by differentiating both sides of Equation (15), it yields: 

 
𝑆̇ = 𝜔! −𝜔∗ = 𝐶𝑥 − 𝜔∗     (16) 

 
Combining Equation (2) and Equation (16), a new state-space model in which 
the torque Tm is substituted by the control signal u is derived as follows: 
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In steady-state, 𝑥̇ = 0 and 𝑆̇ = 0, then the steady-state solution xs, Ss and us 
must satisfy the following equation: 

 
 T𝐵% 0

0 −1U T
𝑇)
𝜔∗U = − T𝐴 0

𝐶 0U T
𝑥(
𝑆(U − T

𝐵&
0 U 𝑢(   (18) 

 
Substituting Equation (18) into Equation (17), it gives: 
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Define a new state variable Z as: 
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Then Equation (19) becomes: 
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Choose the performance index J as follows: 
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 and 𝑅 = 𝛾 

 
Then, the state feedback gain K = [K1K2] of the LQR control for system in 
Equation (21) subject to performance index in Equation (22) can easily be 
computed. Consequently, the control input q is: 

 
𝑞 = −𝐾𝑍 = −𝐾%𝑍% −𝐾&𝑍&or𝑢 − 𝑢( = −𝐾%(𝑥 − 𝑥() − 𝐾&(𝑆 − 𝑆()(24) 
 

Since 𝑢( = −𝐾%𝑥( −𝐾&𝑆(in steady state, Equation (24) becomes: 
 

𝑢 = −𝐾%𝑥 − 𝐾&𝑆 = −𝐾%𝑥 − 𝐾& ∫ (𝜔! −𝜔∗$
= )𝑑𝜏  (25) 

 
By considering Figure 2, it can be realized that F = [f1 f2 f3 f4 f5] = K1 and Ki = 
K2. Since the load torque of which the sudden change may cause speed drop 
and initiate hazardous torsional vibration is observed by the ESO, the feed 
forward compensation gain	𝐾" = 1 is sufficient.  
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With the ESO, the state estimation errors can approach zero with 
arbitrarily dynamic [15]. Then, the stability of the control system can be 
guaranteed by the LQR controller [16].  
 
Numerical Simulation 
In this section, numerical simulations are carried out to verify the effectiveness 
of the proposed control strategy. The systems parameters are provided in Table 
1. 
 

Table 1: Systems parameters 
 

Name Symbol Value 
Motor inertia Jm 1552 Kgm2 
Inertia of load 1 JL1 1000 Kgm2 
Inertia of load 2 JL2 542 Kgm2 
Stiffness of shaft 1 KS1 5.93x106 Nmrad-1 
Stiffness of shaft 2 KS2 5.93x106 Nmrad-1 
Load Disturbance TL 0.2x106 Kgm2 

 
After being well tuned, weighting matrices Q and R in Equation (23) 

are chosen with α = 1000, β =107, ε =7.106, δ = 1013 and γ = 1. Then, the state-
feedback gain is K = [3,0560.105   2,2702   2,0347.104   -1.0770   2.7274.103   
3,1623.106]. The gains of ESO are β1 = 6ω0, β2 = 15ω02, β2 = 20ω03, β4 = 15ω04, 
β5 = 6ω05 and β6 = ω06 where ω0 = 1000.  

The performance of the proposed control strategy is first investigated 
by step-response analysis. A constant reference speed, i.e., 30 rad/s, is used 
and the corresponding systems response is shown in Figure 3. It can be 
observed that the speed of the motor and loads quickly track the reference 
speed without vibration. In addition, the robustness of the controller against 
the load disturbance is also verified in this simulation. In detail, an external 
disturbance is introduced at time instance 1s. It can be seen that the influence 
of the disturbance is quickly compensated by the controller in about 0.1 s.  

In order to show the validity of the ESO, the error between the real and 
the observed speeds of motor, load 1 and load 2 are calculated and shown in 
Figure 4. It can be realized that these errors are extremely small even in 
transient-state, and quickly converge to zero in steady-state. 

To show the advantage of the proposed control strategy over the 
conventional PID controller, comparative simulation is also carried out. A PID 
controller of which parameters are well tuned by particle swarm optimization 
(PSO) technique is used for system (2). The comparative speed responses of 
the PID controller and the proposed controller are provided in Figure 5. It can 
be seen that although being optimized, the PID controller still shows poor 
performance, i.e., large overshoot with torsional vibration. In contrast, the 



Duong Minh Duc et al.  

 
88 

 
 

proposed controller shows much better performance with smooth transient-
state whilst the vibration is completely removed.  

 
 

 
 

Figure 3: Velocity responses of the system with the proposed controller 
 
 

 
 

Figure 4: Speed estimation errors 
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(a) Motor velocity 

 

 
(b) Load 1 velocity 

 

 
 

(c) Load 2 velocity 
Figure 5: Comparison between PID and the proposed controller 

 
Finally, the robustness of the proposed control strategy against the 

parameter variation is test. The moment of inertial of the loads used in 
simulation is two times larger than the one used in control design. The 
simulation result in this case is shown in Figure 6. Although the system model 
is inaccurate, the system speed still tracks the reference one without vibration. 
However, the overshoot is unavoidable in this case. The reason may come from 
the transient response of the ESO.  
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Figure 6: Velocity responses of the system with the proposed controller in 
case of parameter uncertainty. 

 
 
Conclusion 
 
In this paper, we proposed the LQR controller based ESO for a three-inertia 
system in order to achieve vibration suppression and disturbance rejection. The 
unknown states and load torque are estimated using ESO. Then, the state 
feedback and feedforward compensation for load torque are employed in 
control design. Theoretical analysis and numerical simulations show that the 
proposed control strategy guarantees the system stability, good performance 
and robustness with parameters variation as well as load disturbance. 
Particularly, the control strategy can easily be extended to be applied to any 
order inertia systems.  
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