UNIVERSITI TEKNOLOGI MARA

ANTIBACTERIAL ACTIVITY AND TOXICITY ASSAY OF BIOSYNTHESIZED SILVER NANOPARTICLES BY NEEM (Azadirachta indica) LEAVES EXTRACT

NUR AMIRA BINTI SARIMAN

BSc

July 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Undergraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nur Amira Binti Sariman
Student I.D. No.	:	2016307229
Programme	:	Bachelor of Science (Hons.) Biology - AS201
Faculty	:	Applied Sciences
Thesis Title	:	Antibacterial Activity and Toxicity Assay of
		Biosynthesized Silver Nanoparticles by Neem
		(Azadirachta indica) Leaves Extract
Signature of Student	:	
Date	:	July 2019

ABSTRACT

Recently, the development of nanotechnology using biological sources has attracted a great deal of attention among scientists since it is safe for human therapeutic uses as well as the environment. Therefore, this study aims to identify and characterize the presence of silver nanoparticles (AgNPs) from Azadirachta indica using UV-Visible spectroscopy as well as determine the antibacterial and toxicity activities of biosynthesized AgNPs. The AgNPs was biosynthesized by mixing 10 mL of A. indica leaves extract and 6 mL of 1 mM AgNO₃ and heated at 60°C. Then, these AgNPs were characterized by UV-Vis spectroscopy (200 - 1000 nm). For the determination of the antibacterial activity of AgNPs, the Kirby-Bauer disc diffusion technique was used against Pseudomonas aeruginosa and Bacillus subtilis. The AgNPs biosynthesized from A. indica leaves extract also was tested for its toxicity by using the brine shrimp (Artemia salina nauplii) as the test organism. Therefore, the result of this study was found that the colour changes from light yellow to dark brown indicated the formation of AgNPs after 20 minutes and the UV-Vis spectrum displayed the highest peak was in the range of 420 - 450 nm. For the antibacterial activity of AgNPs at 1000 μ g/mL, the highest zone of inhibition exhibited by P. aeruginosa and B. subtilis was 12.67 mm and 12.33 mm diameter, respectively. The LC₅₀ value of brine shrimp lethality assay for AgNPs was 5223.22 µg/mL revealed that the biosynthesized AgNPs were non-toxic as the LC_{50} was above 1000 µg/mL, based on Meyer's toxicity index. Overall, A. indica leaves extract can be used efficiently as an alternative for the production of potential antibacterial and nontoxicity of AgNPs.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS	xiii
LIST OF NOMENCLATURES	xiv

CH	APTE	R ONE: INTRODUCTION	1
1.1	Resear	ch Background	1
1.2	.2 Problem Statement		
1.3	1.3 Objectives of the Study		4
1.4	1.4 Significance of the Study		
СН	APTE	R TWO: LITERATURE REVIEW	6
2.1	.1 Nanotechnology		6
2.2	Nanop	articles	6
	2.2.1	Classification of Nanoparticles	7
2.3	Silver	Nanoparticles	8
2.4	Synthe	esis of Silver Nanoparticles	9
	2.4.1	Physical Method	10
	2.4.2	Chemical Method	11
2.5	.5 Importance of Biological Silver Nanoparticles		11
2.6	Biosyr	thesis of Silver Nanoparticles	12
	2.6.1	Synthesis of Silver Nanoparticles using Bacteria	12

2.6.2 Synthesis of Silver Nanoparticles using Fungi	12	
2.6.3 Synthesis of Silver Nanoparticles using Plant Extract	13	
2.7 Characterization of Silver Nanoparticles	14	
2.7.1 UV-Visible Spectroscopic Analysis	14	
2.8 Silver Nanoparticle as Natural Antibacterial Agent		
2.9 Toxicity Test of Synthesized Silver Nanoparticle	16	
CHAPTER THREE: RESEARCH METHODOLOGY	18	
3.1 Material	18	
3.1.1 Raw Material	18	
3.1.2 Chemical	18	
3.1.3 Apparatus	18	
3.2 Collection and Preparation of Plant Extract	18	
3.3 Synthesis of Silver Nanoparticles	19	
3.4 Characterization of Synthesized Silver Nanoparticles	20	
3.4.1 UV-Visible Spectroscopic	20	
3.5 Media Preparation	20	
3.5.1 Nutrient Broth Medium	20	
3.5.2 Muller Hinton (MH) Agar	20	
3.5.3 Bacterial Tested	21	
3.6 Streaking Culture		
3.7 Subculture of Bacteria		
3.8 Antibacterial Test		
3.9 Toxicity Test		
3.10 Statistical Analysis	23	
CHAPTER FOUR: RESULTS AND DISCUSSIONS	24	
4.1 Visual Observation of Silver Nanoparticles Biosynthesized from	24	
Neem Leaf Extract		
4.2 Percentage Yield of Silver Nanoparticles Biosynthesized from	25	
Neem Leaves Extract		
4.3 UV-Visible Spectroscopic Analysis		
4.4 Antibacterial Assay of Biosynthesized Silver Nanoparticles		
4.5 Toxicity Test of Synthesized Silver Nanoparticle	32	