UNIVERSITI TEKNOLOGI MARA

ISOLATION AND IDENTIFICATION OF BACTERIA FROM PHYTOREMEDIATION PLANT OF *Heliconia psittacorum*

SYAHIRAH NAAILAH BINTI KAMARUL BAHARIN

Faculty of Applied Sciences

July 2019

AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi Mara. It is original and it is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution and non-academic institution for any degree.

I hereby, acknowledged that I have been supplied with the Academic Rules and Regulations for Undergraduates, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Syahirah Naailah binti Kamarul Baharin	
Student I.D. No	:	2016589537	
Programme	:	Bachelor of Science (Hons) Biology -AS201	
Faculty	:	Applied Sciences	
Dissertation Title	:	Isolation and Identification of Bacteria from	
		Phytoremediation Plant of Heliconia psittacorum	
Signature of Student	:		
Date	:	July 2019	

ABSTRACT

The increasing of environmental damage worldwide had raised concerns to the human populations as the ability for the pollutants to degrade takes a long time which may be partially solved by the emerging phytoremediation technology. This cost-effective plantbased approach to remediation takes advantage of the remarkable ability of plants and microorganisms to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues which toxic heavy metals and organic pollutants are the major targets. This study aims to analyse on the concentration of grampositive and gram-negative bacteria and identify the bacteria using biochemical assays and commercialized API Kit. Three plant samples of Heliconia psittacorum were analysed for their root and soil sample which showed the concentration of gram-positive bacteria is higher compared to gram-negative bacteria which ranged from 1.9×10^8 to 3.95×10^9 , while gram-negative bacteria ranged from 2.25 x 10^7 to 2.95 x 10^9 . Based on the identification test, seven bacteria were identified. Four gram-negative bacteria which are Enterobacter aerogenes. Escherichia coli. Pseudomonas aeruginosa and Chryseobacterium indologenes which is generally bacteria that are common to the environment. Meanwhile, three gram-positive bacteria include Staphylococcus aureus, Staphylococcus xylosus and Staphylococcus lentus have a high impact towards the metal degradation the effluent. In conclusion, the concentration of bacteria is relatively higher in the root area of the plant which dominated by gram-positive bacteria and the bacteria that were identified have prominent effect on phytoremediation process.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	xiii

CH	APTER ONE: INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	1
1.3	Significance of Study	2
1.4	Objective of Study	3

CH	APTER TWO: LITERATURE REVIEW	4
2.1	Phytoremediation	4
2.2	Constructed wetland	4
2.3	Aquaculture	5
2.4	Threats to The Marine	5
2.5	Heliconia psittacorum	6
2.6	Rhizome	6
2.7	Rhizosphere	7
2.8	Microorganism Associated Phytoremediation	8
2.9	Culture-based Method	10

CHAPTER THREE: METHODOLOGY	11
3.1 Material	11
3.1.1 Raw materials	11
3.1.2 Chemicals	11
3.1.3 Apparatus	11
3.2 Methods	11
3.2.1 Plant Sample Collection	12
3.2.2 Plant Sample Preparation	12
3.2.3 Media Preparation	12
3.2.3.1 Preparation of Agar Medium	12
3.2.3.2 Preparation of Broth Medium	12
3.2.3.3 Saline Buffer Preparation	13
3.2.4 Determination of Bacterial Concentration	13
3.2.4.1 Preparation of Bacterial Serial Dilution	13
3.2.4.2 Pour Plating of Bacterial Serial Dilution	13
3.2.5 Isolation of Bacteria	14
3.2.6 Microscopy Analysis	14
3.2.6.1 Gram staining	14
3.2.7 Biochemical Analysis	15
3.2.7.1 Gram-Negative Bacteria	15
3.2.7.2 Gram-Positive Bacteria	16
3.2.8 Identification of Bacteria by using API Kit	16
CHAPTER 4: RESULTS AND DISCUSIONS	18
4.1 Bacteriological Analysis	18
4.2 Characteristics of Bacteria Colony on MacConkey Agar	21
4.3 Characteristics of Bacteria on Mannitol Salt Agar	21
4.4 Gram Staining and Microscopy Analysis	22
4.5 Identification of Bacteria using Biochemical Assays	24
4.5.1 Triple Sugar Iron	25
4.5.2 Urease Test	26