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ABSTRACT 

 

Studies on the effect of shape memory alloy (SMA) on structural behaviours of 

laminated composite that include mechanical and thermal buckling, vibration 

and deflection are numerous. However studies on such effect of SMA on 

parametric instability of composite plates are hardly to be found in literatures. 

The parametric instability is an important design consideration for structures 

that are loaded periodically as to avoid the possible occurrence of fatigue 

failure to the structures due to the parametric resonance. This paper is to 

report on a study conducted to investigate the improvement made by the SMA 

on the parametric instability behaviour of laminated composite plates 

subjected to periodic compressive load. SMA, well-known for having the shape 

memory effect property that is capable of inducing recovery stress in the SMA, 

in wire form is embedded within laminated composite plates. Brinson’s model 

is used to predict the amount of recovery stress induced and the new property 

of the SMA after the phase transformation occurs in the SMA. Based on the 

third order shear deformation theories (TSDT), the governing equation for the 

parametric instability of the SMA composite plate is developed using finite 

element method (FEM). The Mathieu-Hill type of parametric instability 
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equation is derived and solved using the Bolotin’s method. The results due to 

the TSDT have been found to correlate well with the results due to the first 

order shear deformation theory (FSDT). Furthermore it is found that the SMA 

causes a significant improvement of delaying the parametric instability from 

occurring by shifting to the instability chart to the right. The effect of SMA on 

the dynamic instability of laminated composite plate depends greatly on the 

activation temperature and the initial stress of the SMA that determine the 

amount of recovery stress induced by the SMA. 

 

Keywords: Parametric resonance; shape memory alloy; Mathieu-Hill 

equation; Bolotin’s method. 

 

 

Introduction  
 

Fibre reinforced composite structures have attracted many applications that 

require structures with tailorable properties and weight saving capability. 

Specifically, laminated composite has been widely used in industries such as 

aerospace, marine and automotive where the composite can be subjected to 

static and periodic loadings. The latter loading may cause the occurrence of 

excessive vibration in the structures. This so called parametric resonance or 

parametric instability is a result of a type of dynamic instability of structure 

that is having time-varying (periodically) parameters which may be due to 

among others the asymmetric of the structure and the compressive periodic 

input load. The critical part about this parametric resonance as compared to the 

typical force resonance is that it may occur at sub or multiple of the frequency 

of the periodic loading. At the same time this means that parametric resonance 

may occur at loading that is even lower than the critical buckling load. The 

eventual consequence of the prolonged excessive vibration due to this 

parametric resonance is that the structures can fail due to fatigue failure [1].  

Without any doubt the problem of parametric instability should be an 

important consideration in the design of structural components that are 

subjected to periodic loading.   

The improvement of structural behaviours of composite structures has 

been made possible in recent years through combining composite structures 

with new advanced materials such as carbon nanotube [2], functionally graded 

material [3] and smart materials such as piezoelectric and shape memory alloy 

(SMA) [4]. SMA has been researched intensively because of its ability to 

induce stress and/or strain that can improve structural behaviours. The SMA’s 

properties of shape memory effect (SME) and quasi-plasticity are exploited in 

this research. The SME is a property of SMA that allows the generation of 

stress and/or strain in SMA structures as temperature is increased above a 

certain value. The generated tensional stress improves strain energy and thus 
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improves structural behaviours of the structure. As such this improvement 

method is termed as the active strain energy tuning (ASET). At the same time, 

the transformation of SMA from martensite to austenite will improve 

mechanical properties of the SMA and this type of improvement is called the 

active property tuning (APT). In this study, due to its simplicity, the Brinson’s 

model [5] is used to predict the property change of the SMA and the amount 

of recovery stress provided by the SMA as a function of temperature. 

Studies on parametric resonance of composite structures have been 

conducted for decades. Studies on the effect of SMA on structural behaviours 

including buckling and vibration are numerous. However specifically, the 

literature is lacking on researches made on improving parametric instability 

behaviour of SMA based laminated composites. Fazilati and Ovesy [6] used 

two versions of finite strip method and semi-analytical method to investigate 

the parametric instability of flat and curved thin-walled composite laminated 

structures subjected to harmonic in-plane loading. The classical plate theory 

and the Koiter-Sanders theory of shallow shells were applied. After conducting 

several analyses with the developed model, it can be said that the finite strip 

method is a reliable tool for calculating the parametric instabilities properties 

of the structures. Recently, Ramachandra and Panda [7] conducted a study on 

the dynamic instability of composite plates subjected to non-uniform in-plane 

loads. The static and dynamic components of the applied periodic in-plane 

loading were assumed to vary according to either parabolic or linear 

distributions within plates. The Ritz method was used to generate the stress 

distribution within the prebuckling stage. The Mathieu type of equation was 

developed using the Hamilton’s variational principle and the Galerkin’s 

method. Later the Bolotin’s method [1] was used to solve the Mathieu’s 

equation applying the first order and second order approximation. One 

important finding here was that the first order approximation predicts 

accurately the instability region while the shear deformation narrowed down 

the width of the instability region.   

A. Rasid and co-workers [8-9] conducted numerous studies on the 

effect of SMA on buckling behaviour of laminated composite plates subjected 

to mechanical, thermal and combined loading. Ebrahimi et al. [10] developed 

a nonlinear equation of motion for the simply supported SMA hybrid 

composite moving beams based on the Euler-Bernoulli beam theory while 

including the von Karman type of nonlinearity. The Brinson’s model was used 

to predict the recovery stress of the SMA. An analytical approach was used to 

solve the nonlinear equation where parametric studies were later conducted. 

Tsai and Chen [11] improved the dynamic instability behaviour of laminated 

composite beams by embedding within the beam the SMA wires. The Nitinol 

SMA transformational behaviour was modelled using the Liang and Roger’s 

model. It was found that the activation of the SMA wires will shift the unstable 

region to the right of the instability chart.  
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In this paper, the effect of the SMA on the parametric instability of 

laminated composite plates is reported. The governing equation is developed 

based on both the first order shear deformation theory (FSDT) and the third 

order shear deformation theory (TSDT) where the formulations have been 

made general to fit both theories.  Using the developed source codes, the 

effects of the SMA on the parametric instability of composite plates are studied 

through the improvement methods of the APT and the ASET. The instability 

charts are determined for several changes in parameters that include the 

activation temperature and the initial strain of the SMA. 

 
 
Material and Method  

 
The constitutive model of the SMA   
This study uses the Brinson’s model [5] to predict the SME behaviour of the 

SMA. The material parameters used in the constitutive and evolutionary 

equations of the Brinson’s model [5] are shown in Table 1 [12].  The quassi-

plasticity and SME behaviours of SMA are simulated to determine the 

recovery stress induced by the SMA as a function of activating temperature, 

Ta and initial strain of the SMA, 0.   

 

Table 1: Parameters for the SMA Brinson’s Model [12]  

Parameters Values 

Critical Stress Start, S (Pa) 80E6 

Critical Stress Finish, F (Pa) 155.0E6 

Martensite Young’s Modulus (Pa) 33.0E9 

Austenite Young’s Modulus (Pa) 69.6E9 

Maximum Residual Strain, L 0.058 

Martensite Finish Temperature (0C) 20.7 

Martensite Start Temperature (0C) 26.8 

Austenite Start Temperature (0C) 37.2 

Austenite Finish Temperature (0C) 47.0 

Stress Influence Coefficient (Pa 0C-1) 10.6E6 

Stress Influence Coefficient (Pa 0C-1) 9.7E6 

 

The SMA composite plate   

In this study, referring to Figure 1, the configuration of the composite is [0/(/-

)n/0] where n is an integer to be specified. The 0 layers or the outer layers 

correspond to nitinol-epoxy (NE) layer while other layers are glass-epoxy 

(GE) layers. The plate has length of a = b = 500 mm. The volume fraction of 

Nitinol in a NE layer is 0.5 just like the volume fraction of the glass in the GE 

layer. The thickness of each layer is the same based on the a/t ratio used for a 
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particular analysis. Simply supported boundary condition is applied 

throughout the study. P(t) is the periodic axial load. For comparison purpose, 

four cases of composite plates are used: 1. Plate without SMA (WO SMA) 

where the outer layers of the plate are the GE layers  2. Plate with non-activated 

SMA (NO ACT) 3. Plate with activated SMA but considers property 

improvement only (APT) 4. Plate with activated SMA that considers recovery 

stress and property improvement (ASET).  

 

 

 

Figure 1: The SMA composite plate 

 

The dynamic instability formulation   
Assuming perfect bonding occurs between SMA wires and epoxy, the effective 

properties for NE layers can be calculated using the rule of mixture as it is 

typically done for the fibre-epoxy layer. As an example, referring to the 

material coordinate system (1-2-3) of the SMA composite plate in Figure 1, 

we have the effective Young’s modulus for the SMA layer such as 

 

  𝐸1 = 𝑉𝑚𝐸𝑚 + 𝑉𝑎𝐸𝑎                                             (1) 

 

where 𝐸1 is the Young’s modulus in 1 direction, 𝐸𝑚 and 𝐸𝑎 are the Young’s 

modulus for epoxy matrix and SMA respectively and 𝑉𝑚 and 𝑉𝑎 are the 

volume fractions for epoxy matrix and SMA respectively. 
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The kinematic of the SMA laminated composite plate is assumed to be as the 

following [13]:   

 

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑥(𝑥, 𝑦, 𝑡) + 𝑧3𝛽𝜉𝑥 

 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑦(𝑥, 𝑦, 𝑡) + 𝑧3𝛽𝜉𝑦    (2) 

 𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

where 𝑢, 𝑣 and 𝑤 are the generalized displacements at any points on the plates 

in the 𝑥, 𝑦 and 𝑧 directions respectively while 𝑢0, 𝑣0 and 𝑤0 are the 

displacements at any points on the mid-plane of the plates in the 𝑥, 𝑦 and 𝑧 

directions respectively. The rotations in the 𝑥-𝑧 and the 𝑦-𝑧 planes respectively 

are represented by 𝜃𝑥 and 𝜃𝑦 while  𝜉𝑥 and 𝜉𝑦 correspond to the warping 

functions in the x-𝑧 and the 𝑦-𝑧 planes respectively.  𝛽 is a constant used to 

differentiate between the FSDT and the TSDT where 𝛽 = 0 is for the FSDT 

theory and 𝛽 = 1 is for the TSDT theory. The in-plane constitutive relationship 

for a SMA laminated composite plate in material coordinate system is  

 

       {

𝜎1

𝜎2

𝜏12

}

12

= [

𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄33

]

𝑘

{

𝜀1

𝜀2

𝛾12

} + 𝑉𝑎 {
𝜎1

𝑟

0
0

}      (3) 

 

or in a short form, 

 

    {𝜎}12 = [𝑄]𝑘{𝜀}12 + 𝑉𝑎{𝜎𝑟}12    (4) 

 

where [𝑄]𝑘 is the reduced stiffness matrix of the kth layer of the composite and 
{𝜎𝑟} is the recovery stress vector of the SMA.  

 

Finite element implementation 
Eight noded iso-parametric quadrilateral elements are used in this study. Each 

node carries 5 or 7 degrees of freedom for FSDT or TSDT respectively. Upon 

applying the Hamilton’s principle, the governing equation for the dynamic 

instability of laminated composite with embedded SMA is  

 
[𝑀]{𝑞̈} + ([𝐾𝐿] + [𝐾𝑠] + [𝐾𝑟]){𝑞} + 𝑃(𝑡)[𝐾𝐺]{𝑞} = 0 (5) 

 

Assuming 𝑃(𝑡) is periodic and harmonic compressive load in the form of   

 

𝑃(𝑡) = 𝑃𝑠 + 𝑃𝑡𝑐𝑜𝑠𝜔𝑡     (6)  

 

where 𝑃𝑠 is the static portion of the load 𝑃(𝑡) and 𝑃𝑡 is the amplitude of the 

dynamic portion of the 𝑃(𝑡).  is the frequency of the periodic loading. The 
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static and dynamic components of load can be expressed in terms of critical 

load of the plate, i.e. 

 

𝑃𝑠 = 𝛼𝑃𝑐𝑟  .   𝑃𝑡 = 𝛽𝑃𝑐𝑟      (7) 

 

where 𝛼 and 𝛽 are the static and dynamic load factors. Eqn. (5) then 

becomes 

 
[𝑀]{𝑞̈} + ([𝐾𝐿] + [𝐾𝑠] + [𝐾𝑟]){𝑞} −   

(𝛼𝑃𝑐𝑟[𝐾𝐺] − 𝛽𝑃𝑐𝑟[𝐾𝐺]𝑐𝑜𝑠𝜔𝑡){𝑞} = 0   (8) 

 

Or in a simplified form, 

 
[𝑀]{𝑞̈} + [𝐾]{𝑞} − (𝛼𝑃𝑐𝑟[𝐾𝐺] − 𝛽𝑃𝑐𝑟[𝐾𝐺]𝑐𝑜𝑠𝜔𝑡){𝑞} = 0   (9) 

 

Where 

 
[𝐾] = [𝐾𝐿] + [𝐾𝑠] + [𝐾𝑟]     (10) 

 

Eqn. (9) is the Mathieu-Hill type of equation that represents the dynamic 

instability problem of the SMA composite plate. Applying the Bolotin’s 

method, we obtain  

 

[[𝐾] − 𝛼𝑃𝑐𝑟[𝐾𝐺] ±
1

2
𝛽𝑃𝑐𝑟[𝐾𝐺] −

𝜔2

4
[𝑀]] {𝑞} = 0  (11) 

 

Eqn. (11) is an eigen value problem where the term ± gives the upper (U
) 

and lower (L
) stability boundaries of the dynamic instability region for 

known values of 𝛼, 𝛽 and 𝑃𝑐𝑟 . FEM source codes have been developed in 

FORTRAN environment to solve Eqn. (11) and validations to the developed 

formulation and codes plus the results are given in the following.   

 

Results and Discussion  
  

The results of the present study on the dynamic instability of SMA composite 

plates are given next. The section starts on the validation of the developed 

formulation on the buckling, vibration and dynamic instability analysis of 

composite plates. Following this, parametric studies on the subject of dynamic 

instability of SMA composite plates with regard to several factors including 

the properties of the SMA are given.  
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Validation on the formulation and source codes 

Since the results on the dynamic instability of SMA composite plates are not 

available in literature, the s on the developed formulation and source codes 

have been conducted rather on the composite plates without SMA or without 

activated SMA. In addition, a comparison analysis between the results of the 

dynamic instability of SMA composite plate due to the TSDT and FSDT based 

formulations are conducted. 

Buckling analysis has been conducted on the composite plates 

embedded with non-activated SMA wires. The results are compared to the 

analytical results that are based on the classical lamination theory (CLT) and 

the FSDT of plates [14]. The results in Table 2 show quick convergence of 

critical loads that occurs in the finite element analysis for all SMA composite 

plates under consideration.  

 

Table 2:  Convergence tests on the non-dimensionalised first 

buckling mode of three simply supported anti-symmetric 

angle-ply SMA composite plates. 

 [0/(45/-45)2/0] [0/(45/-45)4/0] [0/(45/-45)6/0] 

CLTa 235.75 269.88 264.43 

FSDTa 235.75 267.33 261.98 

3x3 236.49 264.70 270.06 

4x4 234.07 267.45 262.29 

5x5 233.78 267.34 261.99 

6x6 233.72 267.27 261.92 

7x7 233.70 267.25 261.88 

8x8 233.69 267.24 261.88 
           a J.N. Reddy [14] 

 

A study on the validation of the developed formulation of the dynamic 

instability of composite plate has been conducted for the WO SMA case. The 

following specifications of composite plates are used: 

 

Dimension of the plate: length, a = b = 500 mm, thickness, a/t = 25  

Material properties: E1/E2 = 40, G12 = G13 = 0.6E22, G23 = 0.5E22, v12 = 0.25 

Fiber orientations: [0/90/0/90/0] 

  

In this study, 𝛼 and 𝛽 are taken as 0 and 0.3 respectively. Table 3 shows 

that the results of lower non-dimensionalised frequency, L and upper non-

dimensionalised frequency, U correspond to the FSDT and TSDT in this 

study agree excellently with results from past literature [15] that used the 

higher order shear deformation plate theory (HSDT). The non-dimensionalised 
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frequency, upper or lower is Ω = Ω𝑒𝑎2(𝜌𝑡/𝐸2) where Ω𝑒 is the actual 

excitation frequency corresponds to the dynamic instability, 𝜌 is density of the 

composite, 𝑡 and 𝐸2 are the thickness and the Young’s modulus of the 

laminated composite in 2-direction.  

 

Table 3:  Dynamic instability of cross-ply symmetric plate 

Ω Present FSDT Present TSDT HSDTa 

U  155.037 154.943 155.03 

L  133.290 133.209 133.29 
     a Wang and Dave [15] 

 

Comparing the TSDT and the FSDT formulations 

A study has been conducted to compare the results of the dynamic instability 

of SMA composite plates analysis using the TSDT and the FSDT formulations. 

The configuration of the SMA composite plates in this study is [0/45/-45/45/-

45/45/-45/0] where a/t = 100. SMA wires are activated at Ta = 55 C and initial 

strain is 𝜀0= 0.01. From the simulation conducted on the Brinson’s model, the 

recovery stress is 𝜎𝑟=139.8 MPa while the Young’s modulus of the SMA is Es 

= 43.2 GPa . Simply supported boundary condition is used in this study. 𝛼 is 

taken as 0 while 𝛽 is varied from 0 to 2. Studies are conducted on the four 

cases of WO SMA, WO ACT, APT and ASET. Table 4 shows the results of 

lower non-dimensionalised frequency, L and upper non-dimensionalised 

frequency, U correspond to the FSDT and TSDT respectively for the cases of 

WO SMA and ASET. Figure 2 and 3 shows the instability charts of composite 

plates in the four cases of WO SMA, WO ACT, APT and ASET based on the 

TSDT and FSDT formulations respectively.  

Table 4 shows that the results correspond to the TSDT are in a very close 

agreement with the results based on the FSDT formulation. The agreement 

between the two theories can also be seen in Figure 2 and 3. This shows that 

the TSDT formulation that does not require the use of the shear correction 

factor can be applied in the dynamic instability analysis of laminated 

composite plates. Figure 2 and 3 are the instability chart that show the 

instability regions where parametric instability occurs for values of loading 

frequencies and dynamic load factor, . The figures also show that the effect 

of SMA is at the greatest when the method of ASET that considers both the 

property improvement and the recovery stress of the SMA is applied. The 

effect of SMA in ASET method comes in two ways: shifting the instability 

chart to the right and enlarging the unstable region. 
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Table 4:  The non-dimensionalised loading frequencies 
correspond to dynamic instability boundaries for SMA 

composite plates based on TSDT and FSDT formulations. 

 
 

WO SMA ASET 

 TSDT FSDT TSDT FSDT 

=0.0  U L U L U L U L 

 0 18.127 18.127 18.127 18.127 37.145 37.145 37.146 37.146 

 0.2 19.011 17.196 19.012 17.197 38.959 35.239 38.959 35.240 

 0.4 19.857 16.213 19.857 16.213 40.691 33.224 40.691 33.224 

 0.6 20.668 15.166 20.668 15.166 42.352 31.078 42.353 31.078 

 0.8 21.448 14.041 21.448 14.041 43.951 28.773 43.952 28.773 

 1.0 22.201 12.817 22.201 12.818 45.494 26.266 45.494 26.266 

 1.2 22.929 11.464 22.929 11.465 46.986 23.493 46.986 23.493 

 1.4 23.634 9.928 23.635 9.929 48.432 20.345 48.432 20.345 

 1.6 24.319 8.106 24.320 8.107 49.836 16.612 49.836 16.612 

 1.8 24.986 5.732 24.987 5.732 51.202 11.746 51.202 11.746 

=0.2 0 16.213 16.213 16.213 16.213 33.224 33.224 33.224 33.224 

 0.2 17.196 15.166 17.197 15.166 35.239 31.078 35.240 31.078 

 0.4 18.127 14.041 18.127 14.041 37.145 28.773 37.146 28.773 

 0.6 19.011 12.817 19.012 12.818 38.959 26.266 38.959 26.266 

 0.8 19.857 11.464 19.857 11.465 40.691 23.493 40.691 23.493 

 1.0 20.668 9.928 20.668 9.929 42.352 20.345 42.353 20.345 

 1.2 21.448 8.106 21.448 8.107 43.951 16.612 43.952 16.612 

 1.4 22.201 5.732 22.201 5.732 45.494 11.746 45.494 11.746 

 1.6 22.929  22.929  46.986  46.986  

=0.4 0 14.041 14.041 14.041 14.041 28.773 28.773 28.773 28.773 

 0.2 15.166 12.817 15.166 12.818 31.078 26.266 31.078 26.266 

 0.4 16.213 11.464 16.213 11.465 33.224 23.493 33.224 23.493 

 0.6 17.196 9.928 17.197 9.929 35.239 20.345 35.240 20.345 

 0.8 18.127 8.106 18.127 8.107 37.145 16.612 37.146 16.612 

 1.0 19.011 5.732 19.012 5.732 38.959 11.746 38.959 11.746 

 1.2 19.857  19.857  40.691  40.691  

=0.6 0 11.464 11.464 11.465 11.465 23.493 23.493 23.493 23.493 

 0.2 12.817 9.928 12.818 9.929 26.266 20.345 26.266 20.345 
 0.4 14.041 8.106 14.041 8.107 28.773 16.612 28.773 16.612 
 0.6 15.166 5.732 15.166 5.732 31.078 11.746 31.078 11.746 

 0.8 16.213   16.213   33.224   33.224   

.         
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Figure 2:  The effect of SMA on the dynamic instability of composite plates 

based on the TSDT formulation. 

 

Figure 3:  The effect of SMA on the dynamic instability of composite plates 

based on the FSDT formulation. 

Looking at the frequency centre, the effect of SMA has increased the 

frequency centre from 16.213 to 33.224, i.e. the increase of more than 100%. 

It can also be seen that as the fiber of the outer layer of the composite is 

changed from glass (WO SMA case) to nitinol (WO ACT case), the instability 
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chart is shifted to the left. This is obviously due to the better property of the 

glass fiber as compared to that of the nitinol fiber. The effect of applying the 

APT method of improvement after that can only give slight improvement to 

the instability chart as can be seen in a small right shifting of the chart. This 

effect of the ASET that is greater than the effect of the APT correlates with the 

finding in the study on the effect of the SMA on the buckling [8] and  thermal 

buckling [9] of laminated composite plates.   

The effect of the static load factor 

The effect of  static load factor, 𝛼 on dynamic instability of SMA composite 

plates under the ASET method of improvement is given in this section. The 

10-layer configuration of [0/45/-45/45/-45/45/-45/45/-45/0] is used in this 

study where the ratio of length to thickness of the plate is a/t = 25. The simply 

supported boundary condition is applied. The activation temperature of the 

SMA is Ta = 60C while the initial strain is 𝜀0= 0.001. This gives the recovery 

stress of  𝜎𝑟 = 91.6 MPa. Figure 4 and 5 shows the effect of the static load 

factor, 𝛼 on the instability charts of the laminated composite plates 

corresponds to the cases of WO SMA and ASET respectively. Figure 8 and 9 

show that as the static load factor is increased, the easier the instability can 

occur at lower frequency value as the instability chart is shifted to the left. This 

trend is true for both cases of WO SMA and ASET and has been shown by 

other researcher [16] in the case of laminated composite plates without SMA. 

However the width of the instability charts seems to almost remain the same 

even with the increase of the static load factor. It can also be seen that the effect 

of the static load factor is not influenced by the presence of the SMA. The 

percentage change of the frequency center in the case of WO SMA moving 

from the case of α = 0 to α = 0.8 is approximately the same for the case of 

ASET i.e the change of about 55%. 

 

The effect of the activation temperature of the SMA  

A study on the effect of the activation temperature of the SMA on the dynamic 

instability of the composite plates is conducted where the initial strain of the 

SMA under consideration is ε0= 0.001. The 12 layer SMA composite plate 

with configuration of [0/45/-45/45/-45/45/-45/45/-45/45/-45/0] is used here.  

The static load factor was taken as α = 0.2 while the ratio of length to 

thickness of composite plate is a t⁄  = 100. Simply supported boundary 

condition is applied. Figure 6 and 7 show the instability charts corresponds to 

the change of activation temperature, Ta for the cases of the APT and the ASET 

method of improvement. In the case of APT, the effect of the increase of the 

Ta is not significant. 
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Figure 4:  The effect of static load factor on the dynamic instability of 

composite plates for the case of WO SMA. 

 

 

 

Figure 5:  The effect of static load factor on the dynamic instability of 

composite plates for the case of ASET 

 

0

0.3

0.6

0.9

1.2

1.5

1.8

0.0 5.0 10.0 15.0 20.0 25.0 30.0



Frequency, 

=0 =02 =06 =08

0

0.3

0.6

0.9

1.2

1.5

1.8

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0



Frequency, 

=0 =03 =06 =08



Jamaluddin Mahmud et al. 

 

117 

 

 

 

Figure 6:  The effect of the activation temperature on the dynamic instability 

of composite plates for the case of APT. 

 

 

Figure 7:  The effect of the activation temperature on the dynamic instability 

of composite plates for the case of ASET. 
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The effect of the Ta can be seen clearly in the case of ASET where the increase 

of the temperature has steadily shifted the instability chart to the right. The 

initial improvement here is however due to the effect of the thermal stress. The 

substantial shifting to the right of the instability chart occurs when the 

temperature changes from 40 C to 60 C. This is due to the phase 

transformation of the SMA from Martensite to Austenite that occurs within 

those temperatures that gives the property improvement and the recovery 

stress. The shifting slows down again after temperature, Ta = 70 C when the 

phase transformation of the SMA is completed. 

 
Conclusion 
  
The study on the effect of SMA on the dynamic instability of laminated 

composite plate has been conducted. The FEM formulation has been 

developed based on the TSDT. The formulation and source codes have firstly 

been validated before parametric studies are conducted. The study finds that 

the SMA has significant effect in postponing the occurrence of the dynamic 

instability by shifting the dynamic instability chart to the right. The effect of 

SMA is significant when the ASET method of SMA improvement that 

considers property improvement and stress recovery is considered. The 

amount of improvement depends largely on the initial strain and the activation 

temperature given to the SMA.  
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