LABORATORY STUDY ON BREAKWATER

INSTITUTE OF RESEARCH DEVELOPMENT AND COMMERCIALISATION UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA

BY:

DR. IR. HJ. MOHD FARID AHMAD @ MAJID ENGR NUR SHAZWANI MUHAMMAD ENGR SALINA AL**I**AS

JANUARY 2008

ACKNOWLEDGEMENT

The researchers would really like to express their gratitude to those who have contributed and helped in completing this research, namely :

Prof. Madya Dr. Ahmad Khairi Abd. Wahab (Director, Coastal and Offshore Engineering Institute, University of Technology, Malaysia)

Prof. Madya Ir. Faridah Jaffar Sidek (Project Director, Coastal and Offshore Engineering Institute, University of Technology, Malaysia)

Pn. Norzana Anuar (Lecturer, Faculty of Civil Engineering, UiTM Malaysia)

En. Yusli Yaakob (Ketua Unit Penyelidikan dan Perundingan, UiTM Pulau Pinang)

ABSTRACT

Breakwater functioned as an energy dissipater that protects the beach area from wave attacks. This research is intended to test and introduce a newly designed open type breakwater which consists of multi layer horizontal plates. The objectives of this research are to study the effectiveness of the new configuration of multi layer breakwater with respect to the wave characteristics and the breakwater dimensions, to evaluate the ability of the multi layer breakwater in dissipating energy in terms of energy loss percentage and to compare the performance of the multi layer breakwater in reflecting wave with a vertical sea wall. Nine multi layer breakwater models with different widths and a model of vertical sea wall were fabricated and tested for this research. Simulations for all models were carried out for two water depths and four regular wave periods. The data obtained from laboratory exercise were analysed using 3-point method introduced by Mansard and Funke (1980). The results were discussed into several separate sections, namely wave steepness, relative gap, relative width and energy loss. It can be concluded from the findings that transmission coefficient was independent of gap spacing but dependant on breakwater width, wave steepness and wave period. Reflection coefficient was independent of breakwater width and gap spacing but dependant on wave steepness and wave period. The multi layer breakwater was able to dissipate energy significantly and more energy was dissipated in fully submerged condition. The proposed breakwater is suitable to be used when the wave period is short. Another important finding was the multi layer breakwater was not able to reflect wave strongly as compared to vertical sea wall.

TABLE OF CONTENTS

CHAPTER

ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	V
LIST OF TABLES	viii
LIST OF ABBREVIATIONS	ix
ABSTRACT	х

CHAPTER 1: INTRODUCTION

1.0	Preface	1
1.1	Research Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Research Questions	4
1.5	Significant of Research	4

CHAPTER 2: LITERATURE RIVIEW

2.0	Introduction	6
2.1	The Nature of the Wave	7
	2.1.1 Common Terminology in Wave	8
	2.1.2 The Behaviour of Wave	9
	2.1.3 Airy Wave Theory	11
	2.1.4 The Influence of Water Depth on Wave Characteristic	15
2.2	Pressure Induced by Wave Motion on Wave Force	17
2.3	Transmission and Reflection of Wave	18
2.4	Breakwater	19
	2.4.1 Types of Breakwater	20
	2.4.1.1 Rubble Mound Breakwater	20

	2.4.1.2 Caisson Breakwater	21
	2.4.1.3 Composite Breakwater	22
2.4.2	Breakwater Design	22
	2.4.2.1 Submerged Breakwater	22
	2.4.2.2 Porous Structure of Submerged Breakwater	23
	2.4.2.3 Thickness of Breakwater	24
	2.4.2.4 Submerged Water Depth and Wave Period	25
	2.4.2.5 Open Type Breakwater	25
Gap o	f Research	27

CHAPTER 3: METHODOLOGY

2.5

3.0	Introduction	29
3.1	Wave Flume	30
3.2	Model Tests Design	33
3.3	Experimental Procedures	36
	3.3.1 Calibration Process	38
3.4	Wave Length	42
3.5	Calculation for Wave Reflection and Transmission	42
3.6	Transmission and Reflection Coefficients	45
3.7	Energy Loss	45

CHAPTER 4: DATA ANALYSIS

4.0	Introduction	46
4.1	4.1 Wave Steepness (H_i/L)	
	4.1.1 The effect of Wave Steepness Variations Due to Breakwater	
	Width and Gap in Partially Submerged Condition	47
	4.1.2 The Effect of Variations of Wave Steepness Due to Breakwater	
	Width and Gap in Fully Submerged Condition	53
4.2	Relative Gap (e/W)	58
	4.2.1 Constant Gap	58
	4.2.2 Variation Gap	62
4.3	Relative Depth	66
4.4	Relative Width (W/L)	71
4.5	Energy Loss (E _{loss})	73
4.6	Summary of Chapter 4	74

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.0	Introduction	79
5.1	Main Conclusion	79
	5.1.1 Breakwater Characteristics	79