

MARA UNIVERSITY OF TECHNOLOGY

PARALLEL GENETIC ALGORITHMS FOR SHORTEST PATH ROUTING IN HIGH- PERFORMANCE COMPUTING

MOHD ERMAN SAFAWIE CHE IBRAHIM

Bachelor of Computer Science Faculty of Computer Sciences and Mathematic

JUN 2012

DECLARATION

I certify that this thesis and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

JUN 21, 2012

MOHD ERMAN SAFAWIE BIN CHE IBRAHIM 2010612098

ABSTRACT

Nowadays, there are a lot of applications that affect the speedup of a computer which reduce its performance. High-performance computer is important because it is implemented in sectors where distributed parallel computing is needed to solve large scientific problems such as storing and processing large amounts of data. This project focuses on step-up cluster computing and a parallel Genetic Algorithm. The objectives of this project to set-up Beowulf cluster computer to apply the Travelling Salesman Problem in parallel by using Genetic Algorithms and evaluate sequential algorithms and parallel algorithms by Genetic Algorithms. This project has the capability to reduce the execution time of application problem using parallel algorithms to increase efficiency of cluster computing. As a result, the network system successfully set-up by clustering computer that named Beowulf clusters and the application problem can be tested on this set-up to show that an increase in processing efficiency by manipulating the reduced communication latency among processors or compute nodes. This project recommended that the efficiency of the algorithm can also be improved by dynamically varying the set-up with other more powerful processor, more main memory capacity as well as faster interconnects. Hopefully, that this project will give benefits to all students and lectures to do the right research direction and fortunately this will provide future research work with ample room for problem testing and measurement of parallel processing.

TABLE CONTENTS

CONTENT	PAGE
DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
APPROVAL	iv
LIST OF FIGURES	V
LIST OF TABLE	vi
CHAPTER 1: INTRODUCTION	1
1.1 Research Background	2
1.2 Research Problem	2
1.3 Research Objectives	3
1.4 Research Scope	4
1.5 Rationale of Research	5
1.6 Important of Research	5
1.7 Limitation of Research	6
1.8 Overview of Research Methodology	6
1.9 Overview of Research Thesis	8
CHAPTER TWO: LITERATURE REVIEW	9
2.1 Introduction to the Parallel Processing	9
2.2 Overview of Parallel Computer	10
2.2.1 Beowulf Cluster	11
2.2.2 Variant of Beowulf Cluster	12
2.3 Parallel Computer Algorithms and Approach	13
2.3.1 Model of Computer Algorithms	13
2.3.2 Genetic Algorithm on Parallel Computing	14
2.3.3 Application on Parallel Computing	16

2.3.4 Travelling salesman Problem	16
2.3.5 Mathematical Formulation of the Travelling	1.0
Salesman Problem	10
2.4 Interprocess Communication	20
2.4.1 OpenMP	20
2.4.2 Parallel Virtual Machine	21
2.4.3 Message passing interface (MPI)	21
2.5 Overlap Communication and Computation	23
2.6 Summary	23
CHAPTER THREE: METHODOLOGY	24
3.1 Introduction	24
3.2 Environment Setup	27
3.2.1 Requirements	27
3.2.2 Setup the Head Node	28
3.2.3 Host	28
3.2.4 Groups	29
3.2.5 Network File Systems	29
3.2.6 Secure Shell	30
3.2.7 Setup the Slave Node	31
3.2.8 SSH on Slave Node	31
3.2.9 Verification	31
3.3 Specification Phase	32
3.3.1 MPI Installation	32
3.3.2 Compiling and Running MPI Programs	33
3.3.3Parallel Hello World	33
3.4 Development Phase	35
3.4.1 Evaluate Sequential Algorithm and Parallel	26
Algorithm using Genetic Algorithm	50
3.4.2. Solving the Travelling Salesman Problem by	39