COMPARISON OF CAFFEINE CONTENTS IN DARK CHOCOLATE AND WHITE CHOCOLATE USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

NUR TIARA BINTI ABD HALIM

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

This Final Year Project Report entitled "Comparison of Caffeine Contents in Dark Chocolate and White Chocolate using High Performance Liquid Chromatography (HPLC)" was submitted by Nur Tiara binti Abd Halim, in partial fulfilment of the requirements for the Degree of Bachelor of Sciences (Hons.) Chemistry, in the Faculty of Applied Sciences, and was approved by

> Jamil Mohamed bin Sapari Supervisor School of Chemistry and Environments Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah, Negeri Sembilan

> Nor Monica binti Ahmad Co-Supervisor School of Chemistry and Environments Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah, Negeri Sembilan

Dr. Sheikh Ahmad Izaddin bin Sheikh Mohd Ghazali Project Coordinator School of Chemistry and Environments Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan Mazni binti Musa Head of Programme School of Chemistry and Environments Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah Negeri Sembilan

Date:

TABLE OF CONTENTS

iii
iv
vi
vii
viii
Х
xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem Statement	9
1.3	Significance of study	10
1.4	Objectives of study	11

CHAPTER 2 LITERATURE REVIEW

2.1	Caffei	12	
2.2	Caffei	ine Content	13
	2.2.1	Coffee	14
	2.2.2	Tea	15
	2.2.3	Dark Chocolate	17
	2.2.4	White Chocolate	20

CHAPTER 3 METHODOLOGY

3.1	Mater	ials	22
3.2	.2 Methods		22
	3.2.1	Preparation of caffeine stock solution	24
	3.2.2	Preparation of standard solutions	24
	3.2.3	Preparation of chocolate solutions	24
	3.2.4	Liquid-liquid extraction (LLE) of caffeine	25
	3.2.5	High Performance Liquid Chromatography (HPLC)	25

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Preparation of standard solutions	27
4.2	Calibration curve of standard solutions	28
4.3	Identification of caffeine in chocolate samples	30
4.4	Estimation of caffeine concentration in chocolate samples	33
4.5	Comparison of caffeine concentration in chocolate samples	34
	-	

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	37
5.2	Recommendations	38

CITED REFERENCES	39
APPENDICES	42
CURICULUM VITAE	50

ABSTRACT

COMPARISON OF CAFFEINE CONTENTS IN DARK CHOCOLATE AND WHITE CHOCOLATE USING HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC)

This study was conducted to compare the amount of caffeine in two types of chocolate from two difference brands. Caffeine were extracted from dark chocolate and white chocolate samples by using liquid-liquid extraction (LLE) method and chloroform as extracting agent. Then, the concentration level of caffeine was determined by using high performance liquid chromatography (HPLC). The calibration curve of standard solutions showed linearity of y = 420.41x + 14.565 and $R^2 = 0.09978$. The data shows that dark chocolates from Brand A and Brand B contain 0.034 mg/g and 0.035 mg/g of caffeine contents respectively, while white chocolate from both brands contain 0.002 mg/g of caffeine lower than a maximum value recommended by regulations which is 1.25 mg/g so, chocolate samples used in this analysis can safely consumed by all generations.