Universiti Teknologi MARA

Dengue Classification System Using Clonal Selection Algorithm

Karimah Binti Mohd

Thesis submitted in fulfillment of the requirements for Bachelor of Computer Science (Hons) Faculty of Computer & Mathematical Sciences

July 2012

DECLARATION

I certify that this thesis and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

KARIMAH BINTI MOHD 2010252776

JULY 15, 2012

ABSTRACT

Dengue remains to be significant public health concern in tropical climate country including Malaysia. As the number of dengue cases is increasing faster in Malaysia, more work need to be done in order to prevent it. Dengue classification and detectionsystem will classify if a person have dengue or not based on symptoms. This projectfocused on three main objectives: to investigate dengue data and Clonal Selection Algorithm for classification of Dengue, to design and develops Clonal Selection Classification System (CSCS) and to evaluate Clonal Selection Classification System symptoms. Some popular intelligent techniques like Genetic Algorithm, Fuzzy Logic and Artificial Neural Network are often used by reasearcher to perform classification problems. At this point, Artificial Immune System(AIS) is one of the inspired biology technique which provide effective solutions for optimization and classificaton problems. One of AIS Algorithm is Clonal Selection Algorithm (CSA) is to classify dengue disease is a suitable to solve classification problem in this project. The rules generated from the training of the dengue data are embedded in the prototype of the classification system. Some of the dengue data are used to test the dengue classification system to produce the classification accuracy. The expected end is to automatically generate dengue classification. The evaluation conducted in this project has shown a promising accuracy. This project can be improved by making a comparative study on Artificial Immune System and other techniques or algorithms used to solve dengue classification problems.

Keywords – artificial immune system, clonal selection algorithm, dengue.

TABLE CONTENTS

CONTENT	PAGE
Declaration	i
Approval	ii
Acknowledgement	iii
Abstract	iv
List of Figures	ix
List of Tables	xi
CHAPTER ONE: INTRODUCTION	1
1.0 Introduction	1
1.1 Background of study	1
1.2 Problem statement	2
1.3 Project objectives	3
1.4 Project scope	3
1.5 Project significances	4
1.6 Summary	4
CHAPTER TWO : LITERATURE REVIEW	5
2.0 Introduction	5
2.1 Dengue	5
2.1.1 How is dengue transmitted	6
2.1.2 Symptoms and signs of dengue	6
2.1.3 Diagnostic the dengue diseasa	7

2.1.4 The epidomiological burden of dengue	7
2.1.5 Major gap knowledge of dengue	7
2.1.6 Dengue situation in malaysia	8
2.2 Definition of classification	11
2.2.1 Classification of dengue	11
2.3 Various techniques used to classify dengue	11
2.3.1 Genetic algorithm	12
2.3.2 Decision tree algorithm	12
2.3.3 Supprot vector machine	13
2.4 Artificial immune system	14
2.4.1 Artificial immune network	14
2.4.2 Negetive selection algorithm (nsa)	15
2.4.3 Clonal selection algorithm	16
2.4.4 Algorithm and implementation	17
2.4.5 Implementation	18
2.5 Related work using clonal selection algorithm	19
2.5.1 Headache disease diagnosis	19
2.5.2 Parkinson's disease diagnosis	20
2.6 Summary	21
CHAPTER THREE: RESEARH METHODOLOGY	22
3.0 Introduction	22
3.1 Research overview	22
3.2 Project development methodology	22
3.3 Background of study	24
3.3.1 Preliminary study	24
3.3.2 Knowledge acquisition and comprehension	24
3.4 Data preparation	26