UNIVERSITI TEKNOLOGI MARA

THE EFFECT OF VARIOUS TITANIUM DIOXIDE (TiO₂) LOADING ON POLYMORPHISM OF STRETCHED POLYVINYLIDENE FLUORIDE (PVDF) /TiO₂ THIN FILM

ZULKHAIRUL AKMAL BIN ABDUL BASIR

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor's Degree of Science** (Polymer Technology)

Faculty of Applied Sciences

January 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Undergraduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Zulkhairul Akmal bin Abdul Basir	
Student I.D. No.	:	2016329001	
Programme	:	Bachelor of Science (Hons.) Polymer Technology - AS243	
Faculty	:	Applied Sciences	
Thesis Title	:	The effect of various Titanium dioxide (TiO2) loading on polymorphism of stretched Polyvinylidene Fluoride (PVDF) /TiO2 thin film	
Signature of Student	:		
Date	:	January 2020	

ABSTRACT

The composite of Polyvinylidene Fluoride/ Titanium dioxide (PVDF/TiO2) thin film were prepared with various loading of TiO₂ using solvent casting method. The solution was stirred for 48 hours using magnetic stirrer at 600rpm. The mixture was casted into glass petri dish before being dried in the oven for 1 hour at 115 °C until the thin film sample formed. Then, the sample was transformed into dumbbell shape and stretched in 3 minutes. The necking area or the stretching area were studied using micrometer screw gauge, inverted microscopy, differential scanning calorimetry (DSC) and ATR-FTIR. The thickness of the thin film was increasing significantly with the addition of TiO_2 . Same goes to the Tensile strength, Incorporated TiO₂ in the PVDF able to enhance the mechanical properties significantly. As for the surface morphology, whitening oval occurs at the control which indicates the lamella while crystal nuclide of TiO₂ was formed and tend to increase with the amount TiO₂ used. Next, on the DSC, the melting temperature (Tm) increased with addition of TiO₂ and PVDF10 shows the highest degree of crystallinity. Lastly, on the ATR-FTIR, PVDF10 has been identified to have highest β -phase due increase the β and γ phase to the second highest peak at 1168cm⁻¹ region, able to increase the β -phase at 1401 cm⁻¹ and most importantly it has the highest peak on 834 cm⁻¹ regions which indicate also the β -phase. Overall, the incorporation of PVDF10 shows the best because it able to produce highest degree of crystallinity and the β -phase.

TABLE OF CONTENTS

AUT	HOR'S DECLARATION	iii	
ABST	ГКАСТ	v	
ABST	ГКАК	vi	
ACK	NOWLEDGEMENT	vii	
TAB	TABLE OF CONTENTS		
LIST	OF FIGURES	xi	
LIST	OF TABLES	xiii	
LIST	OF ABBREVIATIONS	xiv	
CHA	PTER ONE INTRODUCTION	1	
1.1	Background of Study	1	
1.2	Problem Statement	2	
1.3	Significant of Study	3	
1.4	Objectives	3	
CHA	PTER TWO LITERATURE REVIEW	5	
2.1	Polyvinylidene fluoride (PVDF)	5	
2.2	Polymorphism	6	
2.3	Piezoelectric	7	
2.4	Phase transition methods	8	
2.5	N, N-Dimethylformamide (DMF)	9	
2.6	Composite	10	
2.7	Titanium dioxide (TiO ₂)	11	
2.8	Solvent Casting	12	
2.9	FTIR analysis of PVDF thin film	12	
2.10	Scanning electron microscopy (SEM) of PVDF and PVDF/ meso- TiO_2	14	
2.11	Surface morphological studies using SEM	15	
2.12	Differential scanning calorimeter (DSC) study on PVDF and PVDF-		

СНА	CHAPTER THREE RESEARCH METHODOLOGY		
3.1	Materials		
	3.1.1 PVDF	17	
	3.1.2 DMF	17	
	3.1.3 TiO ₂	17	
3.2	2 Method		
	3.2.1 Peparation of PVDF solution	17	
	3.2.2 Preparation PVDF/TiO ₂ mixture	18	
	3.2.3 Solution casting	18	
	3.2.4 Thin film formation	19	
	3.2.5 Mechanical stretching via Tensile	19	
3.2	Testing	20	
	3.2.1 DSC	20	
	3.2.2 ATR-FTIR	20	
	3.2.3 Inverted Optical Microscope	20	
	3.2.4 Micrometre screw gauge	21	
3.3	Flow chart	22	
CIIA	DTED FOLD DESLIT AND DISCUSSIONS	23	
	THE FOUR RESULT AND DISCUSSIONS		
4.1	Thickness of PVDF/TiO ₂ thin-film		
4.2	Tensile strength of PVDF/TiO ₂ thin-film		
4.3	Surface morphology of PVDF thin-film.		
4.4	Differential scanning calorimetry for PVDF/TiO ₂ thin-film ATR-FTIR result	30	
4.5	AIR-FIIR lesuit	32	
СНА	PTER FIVE CONCLUSION AND RECOMMENDATION	41	
5.1	Conclusion	41	
5.2	Recommendations	42	
DEE		12	
KEF.	ERENCES	43	

15