UNIVERSITI TEKNOLOGI MARA

MECHANICAL, ADHESION AND CORROSIVE PROPERTIES OF UNSATURATED POLYESTER-GRAPHENE COATING TREATED WITH SILANE COUPLING AGENT ON METAL SUBSTRATE

SITI NUR FARYSA BINTI SH SAMSUDIN

Thesis submitted in fulfilment of the requirement for the degree of **Bachelor of Science (Hons.) Polymer Technology**

FACULTY OF APPLIED SCIENCES

JANUARY 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Siti Nur Farysa Binti Sh Samsudin
Student I.D. No.	: 2016524617
Programme	: Bachelor's Degree of Science (Polymer Technology) – AS243
Faculty	: Applied Sciences
Thesis Title	: Mechanical, Adhesion and Corrosive Properties of Unsaturated
	Polyester-Graphene Coating Treated with Silane Coupling
	Agent on Metal Substrate

Signature of Student	:
Date	: JANUARY 2020

ABSTRACT

Graphene treated with silane based unsaturated polyester resin was successfully prepared for primer coatings application via mechanical stirring and sonication process. The objectives of this study was to investigate the mechanical, adhesion and corrosive properties of various graphene loading (0, 2, 4, 6 wt%) filled unsaturated polyester reinforced on metal substrate and determine the effect of silane treatment on graphene reinforcement in unsaturated polyester-graphene coating for primer application with different graphene-silane loading (0, 1, 3, 5 wt%). Mechanical properties via hardness test has been conducted, whilst for adhesion properties via pull out test and contact angle measurement were performed. Immersion test and Tafel Polarization method were conducted to determine the corrosive properties of primer coating. In hardness testing, UPE-GR/GPS regardless of its loading give the highest value of scratch resistance at 5H. While as for pull out test, UPE/GR and UPE/GR-GPS show the same scale which is scale 5. This is attributed to the properties of graphene itself high in strength since it does not affected when the pull-out test was carried out. 3 % of UPE/GR-GPS gives optimum value for advancing which is 153.544° and receding is at 127.254° compared to others samples. On the other hand, immersion test in two medium which is NaCl and seawater solution show an improvement of corrosion when addition of silane regardless of % loadings was implemented on graphene due to the presence of less corrosion at day 6 as compared to control sample that started to corrode at day 3. As for Tafel polarization, 3 % UPE/GR-GPS showed the optimum polarization resistance which is 185.56 Ω and the lowest corrosion rate which is 0.148 mmpy. Overall, the incorporation of graphene/silane into composite improved the mechanical, adhesion and corrosive properties and the optimum coating formulation was found at 3 % UPE/GR-GPS.

TABLE OF CONTENT

AUTHOR'S DECLARATION ABSTRACT ABSTRAK ACKNOWLEDGEMENT		ii
		iii
		iv
		V
TA	BLE OF CONTENT	vi
LIS	ST OF TABLES	ix
LIST OF FIGURES		X
LIS	ST OF SYMBOLS	xi
LIS	ST OF ABBREVIATION	xii
СН	APTER 1 INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	3
1.3	Significance of Study	3
1.4	Objective of Study	4
СН	APTER 2 LITERATURE REVIEW	5
2.1	Coating	5
2.2	Primer Coating	6
2.3	Unsaturated Polyester	6
2.4	Graphene as Reinforcement Filler	8
2.5	Silane Coupling Agent Treatment	9
2.6	Coating Mixing Technique	11
2.7	Mechanical Properties of Primer Coating	12
2.8	Adhesion Properties of Primer Coating	13
2.9	Corrosive Properties of Primer Coating	15
СН	APTER 3 RESEARCH METHODOLOGY	17
3.1	Materials	17
	3.1.1 Chemicals	17
	3.1.2 Apparatus and Equipment	17

	3.1.3 Instruments	17	
3.2	Preparation of Unsaturated Polyester-Graphene Untreated and	18	
	Treated with Silane Coupling Agent of Different Loading of		
	Graphene		
	3.2.1 Pre-Treatment of Steel Plate	18	
	3.2.2 Formulation of Unsaturated Polyester-Graphene Untreated	ed 18	
	and Treated with Silane Coupling Agent		
	3.2.3 Preparation of Unsaturated Polyester-Graphene Untreated	d 19	
	and Treated with Silane Coupling Agent		
	3.2.4 Preparation of Wet Paint	19	
3.3	Characterization	20	
	3.3.1 Fourier Transform Infrared Spectroscopy (FTIR)	20	
3.4	Mechanical Properties Testing	20	
	3.4.1 Hardness Testing	20	
3.5	Adhesion Properties Testing	21	
	3.5.1 Pull Out Test	21	
	3.5.2 Contact Angle Measurement	22	
3.6	Corrosive Properties Testing		
	3.6.1 Immersion test	23	
	3.6.2 Tafel Polarization Method	23	
3.7	Flow Chart of Experimental Procedure	25	
СН	IAPTER 4 RESULTS AND DISCUSSION	26	
4.1	Characterization	26	
	4.1.1 Fourier Transform Infrared Spectroscopy (FTIR) Analys	is 26	
4.2	Mechanical Properties	27	
	4.2.1 Hardness Test	27	
4.3	Adhesion Properties		
	4.3.1 Pull Out Test	29	
	4.3.2 Contact Angle Measurement	31	
4.4	Corrosive Properties	33	
	4.4.1 Immersion Test	33	
	4.4.2 Tafel Polarization Test	40	