UNIVERSITI TEKNOLOGI MARA

THE EFFECT OF DIFFERENT SILANE COUPLING AGENT CONCENTRATION TOWARDS PHYSICAL AND MECHANICAL PROPERTIES OF POLYPROPYLENE/BANANA FIBER COMPOSITE

SHAHIRA BINTI ADNAN

Thesis submitted in fulfilment

of the requirement for the degree of

Bachelor of Science (Hons.)

Polymer Technology

Faculty of Applied Sciences

JANUARY 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in the accordance with the regulation of University Technology MARA. It is original and is the result of my own work, unless otherwise indication or acknowledgement as referenced work. This thesis has not been submitted to any other academic institution or non- academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, University Technology MARA, regulating the conduct of my study and research.

Name of Student	:	Shahira Binti Adnan
Student I.D. No.	:	2016589349
Programme	:	Degree of Bachelor of Sciences (Hons.)
		Polymer Technology – AS243
Faculty	:	Applied Sciences
Thesis Title	:	The Effect of Different Silane
		Coupling Agent Concentation towards Physical
		and Mechanical Properties of
		Polypropylene/Banana fiber Composite
Signature of Student	:	
Date	:	January 2020

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	vi
LIST OF FIGURES LIST OF ABBREVIATIONS	vii viii
ABSTRACT	ix
ABSTRAK	X
CHAPTER 1: INTRODUCTION	
1.1 Background of study	1
1.2 Problem statement	3
1.3 Significance of study	3
1.4 Objectives of study	4
CHAPTER 2: LITERATURE REVIEW	
2.1 Polymer matrix	5
2.2 Natural fiber	7
2.2.1 Banana fiber	8
2.3 Treatment of natural fiber	9
CHAPTER 3: METHODOLOGY	
3.1 Materials	13
3.1.1 Polymer Matrix	13
3.1.2 Natural Fiber	13
3.2 Equipments	13
3.3 Method	14
3.3.1 Preparation of raw materials	14
3.3.2 Fiber treatment	14
3.3.3 Fiber testing	14
3.3.4 Preparation of composite sample	14

3.4 Mechanical testing	15
3.4.1 Tensile testing	15
3.4.2 Impact testing	16
3.5 Physical testing	16
3.5.1 Water absorption testing	16
3.6 Flow chart	17

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Characterization of untreated and treated BF	18
4.1.1 Fourier Transformation Infrared Spectroscopy (FTIR) analysis	18
4.2 The effect of untreated and treated BF towards mechanical and physical properties of PP/BF composite	20
4.2.1 Tensile properties	20
4.2.2 Impact properties	24
4.2.3 Water absorption properties	26

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	29
5.2 Recommendations	30
REFERENCES	32
AUTHOR'S PROFILE	37

ABSTRACT

Untreated and treated PP/BF composite had been prepared in this research using melt mixing process. The effect of different silane concentration (0.0%, 0.5%. 1.0%, 1.5% and 2.0%) for the BF treatment had been studied towards the physical and mechanical properties of the PP/BF composite. FTIR spectra show the removal of some hemicellulose and the reduction of OH group on BF surface after chemical modification. As for tensile testing, the tensile strength and tensile modulus shows the increasing in trend with the increasing of silane concentration used. This is due to the better interfacial adhesion properties between BF and PP matrix. However, there are gradually decreased in percent elongation break of PP/BF composite by increasing silane concentration, due to stiffening effect of BF on the composite sample was increase. Besides that, there are gradually increased in impact strength of the PP/BF composite with the increase in silane concentration used during treatment process as compared to the PP/BF filled with untreated BF. This is due to the better interaction between fiber and polymer matrix. Other than that, the increase silane concentration used during treatment process had lead to the decrease in percent of water absorption of the PP/BF composite. This is due to the reduced amount of OH molecules that can interact with water molecule. The highest silane concentration used (2%) to treat BF imparts highest physical and mechanical properties. This is due to the better interfacial adhesion between BF and PP matrix was achieved, and also the decreased of the OH group in the fiber due to the chemical treatment that had been done.