DETERMINATION OF XYLANASE ACTIVITY FROM FERMENTATION OF OIL PALM FROND

NURHAMIEZA MD HUZIR

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2016

This Final Year Project Report entitled **"Determination of Xylanase Activity From Fermentation of Oil Palm Frond"** was submitted by Nurhamieza binti Md Huzir, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Voor Azrimi bin Umor Supervisor B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah, Negeri Sembilan.

Ilyanie binti Hj. Yaacob Project Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah, Negeri Sembilan.

Dr. Nor'aishah binti Abu Shah Head of Programme B. Sc. (Hons.) Biology Faculty of Applied Sciences Universiti Teknologi MARA 72000 Kuala Pilah, Negeri Sembilan.

Date: _____

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of Study	4
1.4	Objectives of Study	4

CHAPTER 2: LITERATURE REVIEW

2.1	Fungi	5
2.2	Oil Palm	7
	2.2.1 Oil palm frond	9
2.3	Solid State Fermentation	10
2.4	Enzyme	11
	2.4.1 Xylanase enzyme	11
	2.4.2 Cellulase enzyme	13

CHAPTER 3: METHODOLOGY 3.1 Materials

. *

, °

÷

.

3.2

Materi	als	15
3.1.1	Raw materials	15
3.1.2	Chemicals	15
3.1.3	Apparatus	16
Metho	ds	17
3.2.1	Oil palm frond	17
3.2.2	Growth medium	17
3.2.3	Inoculum preparation	17
3.2.4	Dry mycelium weight	18
3.2.5	Standard curve of glucose	18
3.2.6	Solid state fermentation	19
3.2.7	Reducing sugar production	20
3.2.8	Enzyme extraction	20
3.2.9	DNS reagent preparation	21
3.2.10	Xylanase assay	22
3.2.11	CMCase assay	22

3.3	Summary of Research Study	23
3.4	Statistical Analysis	24
	3.4.1 Spearman's correlation coefficient	24
	3.4.2 Independent sample t-test	24
CHA	PTER 4: RESULTS AND DISCUSSION	
4.1	Dry Mycelium Weight	25
4.2	Standard Curve	26
4.3	Reducing Sugar Production	27
4.4	Enzyme Activity	28
4.5	Analysis of Water Treatment and Fermentation Time Towards	30
	Production of Reducing Sugar and Enzyme Activity.	
4.6	Statistical Analysis	33
	4.6.1 Correlation coefficient between fermentation time and	33
	reducing sugar production.	
	4.6.2 Independent sample t-test	35
CHA	PTER 5: CONCLUSIONS AND RECOMMENDATIONS	37
CITI	ED REFERENCES	38
APP	ENDICES	44
CUR	CURRICULUM VITAE	

v

ABSTRACT

DETERMINATION OF XYLANASE ACTIVITY FROM FERMENTATION OF OIL PALM FROND

Oil palm frond was one of the disposal residues in oil palm industry. Oil palm frond can be potentially used as a substrate for lignocellulolytic enzyme production. In this experiment, grinded oil palm frond was used as a substrate in solid state fermentation using Aspergillus fumigatus to produce CMCase and Xylanase enzyme. The independent variables in this experiment were the fermentation time and the water treatment during fermentation. Experiment was run for 3,5,7,9 and day 11. Further investigation was continued to analyze the effect of water fed to the production of reducing sugar, Xylanase and CMCase activity. Maximum production of reducing sugar was 33.725µmole at day 5 in the presence of water. Both Xylanase and CMCase produced highest activity on the 11th day of experiment without water fed which were 1.13 and 0.497 U/ml respectively. Fermentation with water fed increased the moisture content and yielded more reducing sugar. Xylanase and CMCase were optimum in absence of water fed due to acidic condition of fermentation. Statistical analysis showed that water treatment do not have significant correlation towards reducing sugar production. Meanwhile, t test proved that water fed strategy do not affect the Xylanase but have an interaction towards CMCase.