BIODEGRADATION OF NAPHTHALENE BY USING

Pseudomonas sp. AND Bacillus sp.

SITI KHAIRUNNISA BINTI MOHD RAZALI

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Sciences (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi Mara

JULY 2016

This Final Year Project Report entitled "**Biodegradation of Naphthalene by using** *Pseudomonas* **sp. and** *Bacillus* **sp.** was submitted by Siti Khairunnisa binti Mohd Razali, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

> Mohd Zaini bin Nawahwi Supervisor Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan

Ilyanie Bt. Hj Yaacob Project Coordinator Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan Dr. Nor'aishah Bt. Abu Shah Head of Biology School Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan

Date: _____

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	Х
ABSTRAK	xi

CHAPTER 1: INTRODUCTION

·		
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significance of the Study	4
1.4	Objectives of the Study	5

CHAPTER 2 : LITERATURE REVIEW

2.1	Bioremediation	6
2.2	Naphthalene	7
2.3	Naphthalene as PAHs	7
2.4	Biodegradation of Naphthalene by bacteria	9
2.5	Mechanism and Degradation Pathway for Naphthalene by	9
	bacteria	
2.6	Chemotaxis by bacteria	12
2.7	Stages of Bacteria Adaptation Towards PAH	13
2.8	Pseudomonas sp.	13
2.9	Bacillus sp.	15

CHAPTER 3: METHODOLOGY 3.1 Materials

3.1	Materi	ials		
	3.1.1	Raw mate	rials	16
	3.1.2	Chemical	s	16
	3.1.3	Apparatus		17
3.2	2 Methods			
	3.2.1	Stock Cul	ture Preparation	18
	3.2.2	Culture M	Iedia Preparation	18
		3.2.2.1	Nutrient media	18
		3.2.2.2	M9 Minimal media	19
	3.2.3	Bacterial	culture preparation	20

	3.2.4	Morphological characterization		21
	3.2.5	Preparation of	Naphthalene Stock solution for	22
		Standard calib	ration curve	
		3.2.5.1	Calibration curve of naphthalene	22
	3.2.6	Preparation of	Catechol Stock solution for	22
		Standard calib	ration curve	
		3.2.6.1	Colorimetry of Catechol	23
		3.2.6.1	Calibration curve of Catechol	23
	3.2.7	Determination	of Bacteria biomass	23
	3.2.8	Determination	of Naphthalene degradation	24
	3.2.9	Determination	of Catechol production	24
3.3	Statisti	ical Analysis		25
3.4	Flowcl	nart of study		26

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Morphology of Bacteria	27
4.2	Naphthalene Degrading Activity by Pseudomonas sp. and	29
	Bacillus sp.	
4.3	Production of Biomass Cell Activity by Pseudomonas sp. and	31
	Bacillus sp.	
4.4	Naphthalene Degradation by bacteria	33
4.5	Catechol Production by bacteria	35
4.6	Statistical Analysis	37
	4.6.1 Pearson correlation	37
	4.6.2 Mann-Whitney Test	38

CHAPTER 5: CONCLUSIONS AND RECOMMENDATION 41

CITED REFERENCES	43
APPENDICES	48
CURRICULUM VITAE	65

ABSTRACT

BIODEGRADATION OF NAPHTHALENE BY USING *Pseudomonas* sp.

AND Bacillus sp.

Naphthalene is a type of polyaromatic hydrocarbon and is known as the most common pollutant found in our environment. Due to its harmful effects on living things, naphthalene should be removed using the bioremediation method. This method shows us how microorganism can degrade naphthalene by utilizing it as a carbon source. This biodegradation study using Pseudomonas sp. and Bacillus sp. to degrade naphthalene was conducted to analyze the degradation rate of naphthalene, the biomass cell produced and catechol production as well as to compare the degradation activity by those two bacteria species. Both bacteria were cultured separately in M9 minimal media containing naphthalene for 13 days of incubation time. The biodegradation activity of the bacteria cultures were monitored by UV-Vis spectrophotometer. Based on statistical analysis using Pearson's coefficient of correlation and Mann-Whitney test, Pseudomonas sp. can degrade naphthalene (74.26%) better than *Bacillus* sp. (71.05%). The biomass cell produced by *Pseudomonas* sp. was higher (97.32%) than *Bacillus* sp. (96.09%). Pseudomonas sp. also produced high catechol production (75.31%) than Bacillus sp. (71.06%). This shows that *Pseudomonas sp.* is more efficient to degrade naphthalene as compared to Bacillus sp. However, both bacteria are capable to degrade naphthalene and are practically useful for bioremediation purposes.