ECO-FRIENDLY CARBONIZED MOLASSES POWDER AS FILLER IN NATURAL RUBBER VULCANIZATE

SITI JANNATUL SAKINAH BINTI JAMALUDDIN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) of Polymer Technology in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2019

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	: Siti Jannatul Sakinah Binti Jamaluddin
Student I. D. No.	: 2016674854
Programme	: Bachelor of Sciences (Hons.) Polymer Technology
Faculty	: Applied Science
Thesis Title	:Eco-Friendly Carbonized Molasses Powder as Filler in
	Natural Rubber Vulcanizate

aturate.

Signature of Student Date

: July 2019

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENT	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
LIST OF SYMBOLS	X
ABSTRACT	xi

CHAPTER ONE: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Significant of Study	3
1.4	Objectives	4

CHAPTER TWO: LITERATURE REVIEW

2.1	Natural Rubber Latex		5
	2.1.1	History and Development	5
	2.1.2	Application of Natural Rubber	6
2.2	Filler		7
	2.2.1	Natural Filler	8
	2.2.2	Advantage of Natural Filler	8
2.3	Carbo	nized Molasses Filler	9

CHAPTER THREE: METHADOLOGY

3.1	Materials	10

	3.1.1	Natural Rubber	10
	3.1.2	Zinc Oxide	10
	3.1.3	Stearic Acid	11
	3.1.4	Carbon Black	11
	3.1.5	Carbonized Molasses	11
	3.1.6	N-Cyclohexyl-2-benzothiazole sulfonamide (CBS)	11
	3.1.7	Sulfur	12
3.2	Comp	ound Formulation	12
3.3	Rubbe	er Compound and Mixing Process	13
3.4	Vulca	nization Parameter	13
3.5	Samp	le Preparation	14
3.6	Testin	ng and Characterization	15
	3.6.1	Fourier Transmitter Infrared (FTIR)	15
	3.6.2	Tensile Test	15
	3.6.3	Swelling Test	15
	3.6.4	Hardness Test	16
3.7	Flow	Chart	17

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Characterization	18
	4.1.1 Fourier – Transform Infrared (FTIR) Analysis	18
4.2	Cure Characteristics	19
4.3	Mechanical Test	25
	4.3.1 Tensile Test	25
4.4	Physical Test	30
	4.4.1 Swelling Test	30
	4.4.2 Hardness Test	32

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	35
5.2	Recommendations	35

ABSTRACT

ECO-FRIENDLY CARBONIZED MOLASSES POWDER AS FILLER IN NATURAL RUBBER VULCANIZATE

Further researchers has been carried out to utilize carbonized molasses as possible filler to replace carbon black in order to reduced environmental problem and provide substitution of synthetic filler with natural filler. Study of carbonized molasses had undergone carbonization process to produce natural filler that have comparable properties as carbon black. The research also focus on minimization the usage of carbon black as it has high tendency to deplete and dangerous for environment and human health. Therefore, natural filler is introduce to replace or minimized the usage of carbon black in the rubber industry. Characterization of carbonized molasses is observed by using FTIR. It was found that, carbonized molasses has quite same properties as carbon black in which carbonized molasses contain similar functional group as carbon black. It shows that, carbonized molasses is suitable to be used with carbon black. This is because, they has good filler- rubber relationship and can formed a good reinforcement effect on vulcanized natural rubber. The rubber compound has been reinforced with carbonized molasses and carbon black has been produced using two-roll mill and vulcanized using hot press at 170 °C. This study has been done to determine the effect of various amounts carbonized molasses compared with carbon black on its behavior. On top of that, there are three types of test has been carried out. Firstly, mechanical test such as tensile test to determined tensile strength, elongation at break, tensile modulus. Secondly, physical test such as hardness and swelling test. Thirdly, cure characteristic such as optimum cure time, t₉₀ has been carried out. Based on the data results, it shows that, the incorporation of carbonized molasses (50%) with carbon black (50%) has the highest mechanical properties in term of tensile strength, tensile modulus and elongation at break. Moreover, in term of physical properties, it also has highest hardness. Mooney viscosity and swelling resistance. On top of that, in term of cure characteristic, it also has good cure characteristic. To sum up, carbonized molasses has a good reinforcement effect and can be used to replace carbon black up to 50% which means it can partially use to replace carbon black.