REMEDIATION OF COPPER FROM SYNTHETIC WASTEWATER USING ACTIVATED RICE HUSK AND RICE STRAW AS BIOSORBENT

NUR FARISHA IZZATI BINTI ABDUL AZIZ

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2018

This Final Year Report entitled "Remediation of Copper from Synthetic Wastewater Using Activated Rice Husk and Rice Straw as Biosorbent" was submitted by Nur Farisha Izzati binti Abdul Aziz, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Mohd Zaini bin Nawahwi Supervisor Faculty of Applied Sciences Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan

Lili Syahani binti Rusli Coordinator FSG661 AS201 Faculty of Applied Sciences Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan Dr. Aslizah binti Mohd Aris Head of Biology School Faculty of Applied Sciences Universiti Teknologi MARA (UiTM) Negeri Sembilan, Kampus Kuala Pilah, Pekan Parit Tinggi, 72000 Kuala Pilah Negeri Sembilan

TABLE OF CONTENTS

TAB LIST LIST LIST ABS	KNOWLEDGEMENTS BLE OF CONTENTS F OF TABLES F OF FIGURES F OF ABBREVIATIONS TRACT TRAK	Page iii iv vi vii viii ix x		
CHA	APTER 1: INTRODUCTION			
1.1	Background Study	1		
1.2	Problem Statement	2		
1.3	Significance of the Study	3 4		
1.4				
	APTER 2: LITERATURE REVIEW			
2.1	Adsorption	5		
2.2	Factors Influencing Adsorption Capacity	7		
	2.2.1 Adsorbent dosage	7		
	2.2.2 Contact time	7		
	2.2.3 pH	8		
	2.2.4 Particle size	9		
	2.2.5 Temperature	9		
	2.2.6 Initial concentration	10		
2.3	Agricultural Waste as Biosorbents	10		
	2.3.1 Rice Husk	11		
	2.3.2 Rice Straw	12		
2.4		14		
2.5	Statistical Analysis of Water Contaminated with Heavy Metals in	15		
•	Malaysia			
2.6	Effects on Health and Permissible Limit of Heavy Metals	16		
2.7	Summary of Rice Husk and Rice Straw Remediation	17		
CHA	APTER 3: METHODOLOGY			

CHAPTER 3: METHODOLOGY 3.1 Materials

Material	S	
3.1.1	Raw materials	18
3.1.2	Chemicals	18
3.1.3	Apparatus	18

3.2 Methods

3.2.1	Sample collection	19
-------	-------------------	----

	3.2.2	Preparation of rice husk and rice straw for FTIR analysis	19			
	3.2.3	Characterization by using Fourier Transform-Infrared (FTIR)	20			
	3.2.4	Preparation of rice husk and rice straw as biosorbent	20			
	3.2.5	Preparation of synthetic heavy metal solution	21			
	3.2.6	Preparation of heavy metal solution for calibration	22			
		purpose				
	3.2.7	Screening between rice husk and rice straw as	22			
		effective biosorbent				
	3.2.8	Optimization experiment	23			
	3.2.9	Batch adsorption experiment	24			
	3.2.10	Determination of heavy metal adsorption by using	24			
		Atomic Absorption Spectroscopy (AAS)				
3.3	Data Ar					
3.3	3.3.1	Statistical analysis	25			
	5.5.1	Statistical analysis	23			
CHA	APTER 4	: RESULTS AND DISCUSSION				
4.1			27			
	Straw					
4.2	2 Screening between Rice Husk and Rice Straw as Effective		28			
	Biosorb	ent				
4.3		f Adsorbent Dosage	30			
4.4		f Contact Time	32			
4.5		f Initial Concentration	33			
4.6	Batch A	dsorption Experiment	34			
CHA	APTER 5	: CONCLUSIONS AND RECOMMENDATIONS	37			
CIT	ED REF	ERENCES	39			
APP	APPENDICES					

56

CURRICULUM VITAE

ABSTRACT

REMEDIATION OF COPPER FROM SYNTHETIC WASTEWATER USING RICE HUSK AND RICE STRAW AS BIOSORBENT

Rice husk and rice straw has potential in being biosorbent to adsorb heavy metals such as copper, zinc and nitrate in aqueous solution mainly wastewater. In this study, the objectives are to compare between the utilization of rice husk and rice straw as a biosorbent of copper from synthetic waste water and to optimize conditions for effective biosorption of synthetic waste water on copper ions. The results obtained from this study manifest that there are no significant between rice husk and rice straw in which the percentage adsorption for both of this biosorbents are almost similar except that rice straw give slight higher percentage adsorption (82.18%) compared to rice husk (79.12%). Therefore it has been chosen for optimization experiment for three different parameters which are adsorbent dosage, contact time and initial concentration of synthetic wastewater. The results showed that the best parameter for the biosorbent and copper ions to be removed are at adsorbent dosage of 1g, contact time at 30 minutes and initial concentration of the synthetic wastewater of 50 ppm. These three parameters have significant differences towards the adsorption of copper ions in the solution where p-value is less than 0.05. The optimum parameters were used to continue with batch adsorption experiment. Thus, the best percentage adsorption for copper ions is 81.21% in duration of 30 minutes.