UNIVERSITI TEKNOLOGI MARA

Building Footprint Extraction Based on Insolation with Topographic Surface Derived from LiDAR Dataset

NUR AMALINA BINTI MOHAMED

Thesis submitted in fulfilment of requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

January 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nur Amalina Binti Mohamed
Student I.D. No.	:	2016340997
Programme	:	Bachelor of Surveying Science and
		Geomatics (Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
Thesis/Dissertation	:	Building Footprint Extraction Based on Insolation with
Title		Topographic Surface Derived from LiDAR Dataset
	·	
	•	
Signature of Student		
Date	:	January 2020

ABSTRACT

Automatic building extraction has widely been used by many sectors in making their job easier. Example of this sector is land cover mapping, change detection, urban planning, disaster management and many other socioeconomic operations with the combination from remote sensing and GIS methods play an important role in increasing the efficiency of their job. The manual digitization of building outlines is expensive and time-consuming and building footprint extraction is not complete due to covered with trees and cloud that may include the building's rooftop. The main purpose of this research is identifying the building footprint from all the above ground information captured by LiDAR based on insolation and the objectives is to examine the slope and contour of surface and building roof derived from LiDAR point cloud data, to generate the insolation pattern based on derived topographic surface model, and to identify building footprint based on insolation. The ArcGIS software was used for process the building extraction and identifying characteristic of surface and terrain. The study area was in Taman Melati, Kuala Lumpur. The LiDAR points were used for this research by using solar radiation tools to establish building footprint. The result of this research is the slope and contour of surface and building roof and the building footprint extraction based on the Digital Surface Modelling (DSM). By using building footprint, it is providing the researcher to recognize the potential area for land use planning and urban development and investment in study area.

Table of Contents

ABSTI	RACT	II	
ABSTI	RAK	III	
ACKN	ACKNOWLEDGEMENT		
LIST (LIST OF FIGURES		
LIST (OF TABLES	X	
LIST (DF SYMBOLS	XI	
LIST (OF ABBREVIATIONS	XII	
СНАР	TER 1	1	
INTRO	DUCTION	1	
1.1	Research Background	1	
1.2	Problem Statement	3	
1.3	Research Question	4	
1.4	Aim of Study	5	
1.5	Objective of Study		
1.6	Scope and Limitation	5	
1.7	Significant of Research	6	
1.8	Summary	7	
СНАР	TER 2	8	
LITER	ATURE REVIEW	8	
2.1	Introduction	8	
2.2	Previous Data	8	
2.3	Terrain Mapping and Analysis	8	
2.2	3.1 Digital Surface Model (DSM)	9	
2.3	3.2 Digital Terrain Model (DTM) / Digital Elevation Model (DEM)	10	

3.5	5.5 Slope and Contour Generation	38	
3.5	5.6 Solar Analyst	41	
3.5	3.5.7 Building Extraction		
3.6	Summary	52	
CHAP	ΓER 4	53	
RESUI	T AND ANALYSIS	53	
4.1	Introduction	53	
4.2	.2 Characteristic of Surface and Building Roof Derived from LiDAR Point Clo		
Data	53		
4.2	The Pattern of Slope in Taman Melati, Ampang	53	
4.2	2.2 Contour Map in Taman Melati, Ampang	58	
4.3	Insolation Pattern Based on Derived Topographic Surface	60	
4.4	Building Footprint Extraction using LiDAR Dataset Based on Insolation		
4.5	Summary 6		
CHAP	TER 5	63	
CONC	LUSION AND RECOMMENDATIONS	63	
5.1	Introduction	63	
5.2	Conclusion	63	
5.3	Recommendations	64	
REFERENCES		65	
APPENDICES		71	
BIODATA OF STUDENT		76	