UNIVERSITI TEKNOLOGI MARA

Estimating the Above Ground Biomass Changes from Multitemporal LiDAR Dataset at FRIM Forest, Kepong Selangor

NURUL ATIKAH BINTI RAZALI 2016309981

Thesis submitted in fulfilment of the requirement for the degree of Bachelor of Surveying Science and Geomatic (Hons)

Faculty of Architecture, planning and Surveying

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nurul Atikah Binti Razali
Student I.D. No.	:	2016309981
Programme	:	Bachelor of Surveying Science and
		Geomatics (Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
Thesis/Dissertation Title	:	Estimating the Above Ground biomass Changes from Multitemporal LiDAR dataset at FRIM Forest, Selangor, Kepong
Signature of Student	:	
Date	:	January 2020

ABSTRACT

Forest biomass or above-ground carbon stock is the mass of carbon contained in trees that needs continuous monitoring to determine the amount of potential carbon accumulation in the forest. However, increasing CO2 in the atmosphere has an impact on carbon sequestration and has an indirect impact on the potential growth of trees. Airborne LiDAR data were acquired in 2009 and 2014 and the comparability of both datasets was examined. Therefore, this study is aim to estimate the changes of biomass from multitemporal LiDAR data using two different years datasets at the same place. In order to achieve the aim, the objective of this study area 1) to produce the canopy height model (CHM) of two different LiDAR dataset, 2) to estimate the changes of above ground biomass (AGB) of two different year of datasets and 3) to generate a map of above ground biomass changes between different years of LiDAR datasets. In order to achieve the objective, the software used for data processing and analysis includes ArcMAP 10.4, Global Mapper and LASTools software. This project focused on forestry at Forest Research Institute Malaysia (FRIM). Five phases of method were used, which is data collection, pre-processing, canopy height model (CHM) classification, above ground biomass (AGB) changes and produced carbon stock map. This study is to estimate the changes of above ground biomass (AGB) and carbon stock produces by using allometric equation. The result of differences of AGB is 70.479kg while for carbon stock is 290982.514kg between years 2009 and 2014.

TABLE OF CONTENTS

ABSTR	i	
TABLE	iv	
СНАРТ	1	
INTRO	1	
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Aim and Objective	3
1.4	Research Question	3
1.5	Scope and Limitation	4
1.6	Significance of Study	4
1.7	Thesis Outline	5
1.8	Summary	5
СНАРТ	6	
LITERA	6	
2.0	Introduction	6
2.1	Forestry	6
2.1	7	
2.1.2 Forestry in abroad		8
2.1	.3 Tropical Forest Biomass	9
2.2	Remote Sensing	10
2.3	2.3 Light Detection and Ranging (LiDAR)	
2.3	.1 LiDAR for forestry	12
2.3	.2 LiDAR for aboveground biomass estimation	13
2.4	Multitemporal Lidar	14
2.5	WorldView-2 Image	14
2.6	Aboveground Biomass (AGB) Estimation	15
2.7	Canopy Height Model (CHM)	16
2.8	Watershed Transformation	17
2.9	Local Minima and Maxima	18
2.9	.1 Local Maxima	18
2.9	.2 Local Minima	18
2.10	Individual crown delineation	19
2.11	Allometric Equation	19

2.1	1.1 Allometric equations for carbon stocks estimation	19	
2.12	Carbon Stock	20	
2.13	Related previous/ Estimation of forest biomass changes with multi-		
temp	oral LiDAR data using Remote Sensing approaches	20	
2.14	Summary	21	
CHAPT	TER 3	22	
METHODOLOGY			
3.0	Introduction	22	
3.1	Flow Chart	22	
3.2	2.1 Description of Study Area	24	
3.2	2.2 List of software	26	
3.3	Data Collection	26	
3.3	Airborne LiDAR Data	27	
3.3	8.2 WorldView-2 Satellite Image	30	
3.4	Image Pre-processing	31	
3.4	.1 Subset of image	32	
3.4	.2 Canopy height model (CHM)	32	
3.5	Tree counting using Watershed algorithm	33	
3.6	Estimation of biomass	34	
3.7	Development of an allometric equation by Mohd Zaki at el (2018)	35	
3.8 Allometric equation and carbon stock estimation			
3.9 Summary			
CHAPT	TER 4	37	
RESUL	T AND ANALYSIS	37	
4.0	Introduction	37	
4.1	Classification of point cloud lidar data in LASTOOL software	37	
4.2	DSM, DEM and CHM generation	38	
4.3	Different CHM between two years of LIDAR dataset	41	
4.4	Individual Tree Crown Detection in ArcGIS Software	44	
4.4	.1 Local Maxima Detection	44	
4.4	.2 Flow Direction	45	
4.4	3 Flow Accumulation	46	
4.5	Watershed Transformation using ArcGIS Software	47	
4.6	Tree Crown Delineation using ArcGIS Software	50	
4.7	Analysis the T-Test using IBM SPSS Statistics software	51	