Universiti Teknologi MARA

INTERNET OF THINGS (IoT) DEVICE FOR WEB BASED ASSESSMENT OF RIVER WATER QUALITY

Abu Mohd Sofian bin Ishak

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.) Data Communication & Networking Faculty of Computer and Mathematical Science

January 2020

STUDENT DECLARATION

I certify that this report and the research to which it refers are the product of my own work and that any ideas or quotation from the work of other people, published or otherwise are fully acknowledged in accordance with the standard referring practices of the discipline.

.....

ABU MOHD SOFIAN BIN ISHAK 2017544127

JANUARY 3, 2020.

ABSTRACT

Nowadays, the river is no longer clean like it used to be where people mostly throw rubbish and other unwanted materials into the river, hence contaminating the water. Water river should be safe for all people to use as water is the main source in daily life. Currently, the quality of water in the river is difficult to determine its level of safety just by looking with eyes. The clarity of the water can be seen with naked eyes, but the level of cloudiness of the water is unknown and cannot be measured with the eyes. The specific devices must be used in order to detect the clearness of water but most of the devices are not widely used and expensive. Hence, this project proposes to develop a prototype that can measure the turbidity or the clearness of water to determine whether the water in the river is safe or not and publish the information online to the people. The prototype developed was tested with sensitivity and functionalities test. Prototype developed using a turbidity sensor to measure water turbidity and using Arduino Uno microcontroller to calculate the turbidity and sent it to Thingspeak cloud database and a website through the internet. The results show that this prototype system is able to measure the turbidity, determine whether the current water turbidity is dangerous and provide this information to be stored in the Thingspeak database and publish on the internet. The system is able to provide useful information, the website is well designed and users had good experience using the prototype.

TABLE OF CONTENT

CONTENT	PAGE
SUPERVISOR APPROVAL	ii
STUDENT DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENT	vi
LIST OF FIGURES	X
LIST OF TABLES	xii
LIST OF ABBREVIATION	xiii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Project Scope	3
1.5 Research Significance	3
CHAPTER TWO: LITERATURE REVIEW	
2.1 River Water Quality	
2.1.1 pH Value	
2.1.2 Water Clarity	
2.2 Internet of Things (IoT)	
2.3 Arduino	
2.3.1 Arduino Board	
2.3.2 Arduino Software IDE	
2.4 Water quality sensors	
2.4.1 Temperature sensor	
2.4.2 pH sensor	
2.4.3 Conductivity sensor	10

3.6	Summary	35
CHA	PTER FOUR : DESIGN AND DEVELOPMENT	36
4.1	Design and Implementation	36
	Project Development	
	.2.1Connect the turbidity sensor	
	.2.2Connect the ESP8266-01 Wi-Fi Module	
4.3	Functionality Test	40
4.	.3.1 Turbidity Sensor	41
4.	.3.2 Buzzer Test	42
4.	.3.3 Thingspeak Test	43
4.4	Assembling the Hardware	44
4.5	Uploading the Code	46
4.6	Summary	47
CHA	PTER FIVE : TESTING RESULT AND ANALYSIS	48
5.1	Hardware Component Testing	48
5.	.1.1 Arduino Uno	48
5	.1.2 Turbidity Sensor	49
5.	.1.3 Buzzer Testing	49
5.	.1.4 Thingspeak Testing	50
5.	.1.5 Website Testing	52
5.2	Functionality Testing	53
5.	.2.1 Connection Testing (Prototype Connection to Network)	54
5.	.2.2 Turbidity Sensor Testing	54
5.3	Summary	61
CHA	PTER SIX : CONCLUSION AND RECOMMENDATION	62
6.1	Project Accomplishment	62
6.2	Project Contributions	63
6.3	Problems and Limitations	63
6.4	Recommendation for Future Research	64