UNIVERSITI TEKNOLOGI MARA

PHYTOREMEDIATION ACTIVITY ON Heliconia psittacorum VIA WATER QUALITY TESTING AND BACTERIA IDENTIFICATION

SITI NURFAZLINA BINTI MOHD ROSLAN

Thesis submitted in partial fulfillment of the requirements for the degree of **Bachelor of Science (Hons.) Biology**

Faculty of Applied Sciences

January 2020

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi Mara. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi Mara, regulating the conduct of my study and research.

Name of Student	: Siti Nurfazlina Binti Mohd Roslan
Student I.D. No.	: 2016598611
Programme	: Bachelor of Science (Hons) Biology – AS201
Faculty	: Faculty of Applied Sciences
Thesis Title	: Phytoremediation Activity on Heliconia psittacorum
	via Water Quality Testing and Bacteria Identification
Signature of Student	:
Date	: January 2020

ABSTRACT

The accumulation of contaminants capable to give negative impact towards environment in various ways. Thus, phytoremediation come as a cost-effective technology that used plant and associated microbes to outweigh the problem in soil and water contamination. Heliconia psittacorum becomes one of the plants that have potential characteristic as phytoremediation and ecological friendly. This study was aimed to analyze the concentration and identification of bacteria that could assisted in phytoremediation. Besides, the water quality was tested to correlate with the phytoremediation activity of Heliconia psittacorum. Two samples of soil and roots were prepared and serially diluted for bacteria counting. The concentration of bacteria in roots sample was 4.4 x 10^9 cfu/ml, while, for soil sample was 1.5 x 10^4 cfu/ml. Roots often associated with bacteria and eventually contribute to a higher concentration of bacteria compared to soils. Several suspected colonies then picked, cultured and identified based on biochemical tests and API identification kits. Seven strains of bacteria were identified consisted of Pseudomonas luteola, Serratia liquefaciens, Serratia marcescens, Enterobacter cloacae, Staphylococcus xylosus, Staphylococcus saphrophyticus and Enterococcus faecium. All bacteria that were identified provide a related background mechanism that capable to remove, transfer, stabilize contaminants and indirectly enhanced the plant growth. Besides, the water quality showed reduction in individual concentration of copper, zinc and phosphate from 0.64 mg/l to 0 mg/l, 0.173 mg/l to 0.068 mg/l, and 0.513 mg/l to 0.293 mg/l respectively. In conclusion, the concentration and identification of bacteria in roots and soil provided information regarding on the ability of these bacteria to reduce the contaminants and the water quality assessment proved the potential of Heliconia psittacorum in phytoremediation.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ABSTRAK	\mathbf{V}
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xii

CH	IAPTER ONE: INTRODUCTION	1
1.1	Background of Study	2
1.2	Problem Statement	2
1.3	Significance of Study	3
1.4	Objectives of Study	4
~		_
СН	IAPTER TWO: LITERATURE REVIEW	5
2.1	Phytoremediation	5
	2.1.1 Heliconia psittacorum	6
	2.1.2 Efficacy of Heliconia psittacorum in phytoremediation	7
2.2	Aquaculture	7
2.3	Plant-associated Bacteria in Phytoremediation	8
2.4	Bacteria Identification Method	8
2.5	Water Quality Assessment	9
СН	IAPTER THREE: METHODOLOGY	10
3.1	Material	10
	3.1.1 Raw materials	10
	3.1.2 Chemicals	10

	3.1.3	Apparatus	10
3.2	Metho	ods	11
	3.2.1	Media Preparation	11
		3.2.1.1 Preparation of Agar Medium	11
		3.2.1.2 Preparation of Broth Medium	11
		3.2.1.3 Preparation of Saline Buffer	12
	3.2.2	Sampling and Processing Plant Soils and Roots	12
	3.2.3	Performing Serial Dilution	12
		3.2.3.1 Bacteria Colonies	13
		3.2.3.2 Selection of Bacteria Colony and Pure Colony	14
		Culture	
	3.2.4	Biochemical Testing	14
		3.2.4.1 Triple Sugar Iron Test	14
		3.2.4.2 Citrate Test	14
		3.2.4.3 Urease Test	15
		3.2.4.4 Motility Test	15
		3.2.4.5 MR-VP Test	15
		3.2.4.6 Oxidase Test	15
		3.2.4.7 Catalase Test	15
	3.2.5	Identification of Bacteria Using API Kit (Biomeriux, France)	16
	3.2.6	Water Quality Testing	16

CHAPTER FOUR: RESULTS AND DISCUSSIONS

4.1 Bacteriological Analysis on Differential Agar	
4.1.1 Concentration of Bacteria in Heliconia psittacorum	19
4.2 Characteristics of Colony Growth on Differential Agar	22
4.3 Identification of Bacteria using Biochemical Tests	23
4.3.1 Triple Sugar Iron	24
4.3.2 Citrate Test	24
4.3.3 Urease Test	25
4.3.4 Motility Test	25
4.3 5 MR-VP Test	25
4.3.6 Oxidase Test	26