UNIVERSITI TEKNOLOGI MARA

FIRST-PRINCINPLES STUDY OF THERMOELECTRIC PERFORMANCE OF PURE AND Ni-DOPED Bi₂Se₃ AND Bi₂Te₃ USING DENSITY FUNCTIONAL THEORY

MUHAMMAD ZAMIR BIN MOHYEDIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science (Physics)

Faculty of Applied Sciences

February 2020

ABSTRACT

First principles study-based density functional theory on structural, electronic and thermoelectric properties of Bi2Se3 and Bi2Te3 materials was conducted using CASTEP and WIEN2K computer code within the exchange-correlation of local density approximation (LDA). Calculations of electronic properties were carried out with spinorbit coupling (SOC). The thermoelectric properties were calculated using Boltzmann transport theory that implemented in BoltzTraP with the inclusion of SOC. The effect of SOC on electronic properties and thermoelectric properties were analysed and found that SOC gives a significant contribution. The band gap result showed that spin-orbit coupling is necessary for the calculation to show the true nature of Bi2Se3 and Bi2Te3 that verified by the experimental studies. Bi2Se3 depicts band gap 0.23 eV which is higher than Bi2Te3 with band gap 0.15 eV. Based on the calculated figure of merit, Bi2Te3 shows a better thermoelectric performance of 0.3 compared with the Bi2Se3 which has performance 0.07 at room temperature. The performance of Bi2Se3 increases from temperature 300K to 500K. While, the performance of Bi2Te3 decreases. Then, thermoelectric properties are calculated based on the Fermi level range from -1.0 eV to 1.0 eV to prove that tailoring Fermi level could optimize thermoelectric performance for both Bi2Se3 and Bi2Te3. Thermal conductivity is undesirable for the performance, however it cannot be reduced without reducing electrical conductivity. Adjusting Fermi level could alter the performance of Bi2Se3 and Bi2Te3. It is found that Bi2Se3 has higher ideal thermoelectric performance which possesses figure of merit 0.88, while Bi2Te3 has figure of merit of 0.66. Nickel has reduced band gap of both Bi2Se3 and Bi2Te3, improving electrical conductivity. Ni-doped Bi2Se3 has a slightly better performance with figure of merit 0.335 at 300 K compared with the Ni-doped Bi2Te3 that has figure of merit 0.316.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my Master and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr. Mohamad Fariz bin Mohamad Taib. Also, thanks to Mr. Masnawi bin Mustaffa, Dr. Amiruddin bin Shaari and Prof. Dr. Muhd Zu Azhan bin Yahya.

My appreciation goes to the crewmembers of the Ionic, Materials & Devices (iMADE) Research Laboratory and Scientific Computation and Instrumentation (SCNI) research group who provided the facilities and assistance. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to my very dear wife_v father and mother for the vision and determination to educate me. This piece of victory is dedicated to all three of you. Alhamdulilah.

TABLE OF CONTENTS

CON	ii	
AUT	iii	
ABS	iv	
ACK	V	
TAB	vi	
LIST	ix	
LIST	xi	
LIST	Г OF SYMBOLS	xiv
LIST	XV	
CHA	1	
1.1	Research Background	1
1.2	Problems Statement	2
13	Objective of Study	3
1.4	Significance of Study	4
1.5	Scope of Study and Limitation	4
CHA	6	
2.1	Introduction	6
2.2	Topological Insulator	6
2.3	Thermoelectric Material	8
2.4	Bismuth Selenide (Bi2Se3)	11
2.5	Bismuth Telluride (Bi2Te3)	13
2.6	Density Functional Theory	17
2.7	Spin-Orbit Coupling	23
2.8	Boltzmann Transport Theory	24
2.9	Software	26
CHA	27	
3.1	Introduction	27
3.2	Geometrical Optimization	27
3.3	Convergence Test	30

3.4	Calculation	of	Ele	ectronic	Properties		35	
3.5	Thermoelectric Properties Calculation						37	
3.6	Computational Details for Ni-Doped Bi2Se3 and Ni-Doped Bi2Te3							
CHA	PTER FOUR:	RESULT .	AND DISCU	USSION			40	
4.1	Introduction							
4.2	Structural Properties of Bi ₂ Se ₃ and Bi ₂ Te ₃						40	
	4.2.1 Lattice Parameter of Bi ₂ Se ₃ and Bi ₂ Te ₃						40	
	4.2.2 Bond Length of Bi_2Se_3 and Bi_2Te_3							
4.3	Electronic	Propertie	s of	Bi2Se3	and	Bi2Te3	45	
	4.3.1 Band Structure of Bi_2Se_3 and Bi_2Te_3							
	4.3.2 Densi	ty of	States	of Bi ₂ S	be ₃ and	Bi ₂ Te ₃	50	
	4.3.3 Chem	ical Bonding	g of Electron	Charge De	nsity of Bi2Se	3 and Bi2Te3	54	
4.4	Formation Energy of the Stable Position for Nickel Doping 5							
4.5	Structural P	roperties c	of Ni-doped	l Bi2Se3	and Ni-dop	ed Bi2Te3	58	
	4.5.1 Lattic	e Paramete	r of Ni-do	ped Bi2Se3	3 and Ni-do	ped Bi2Te3	58	
	4.5.2 Bond	Length o	of Ni-doped	$1 Bi_2Se_3$	and Ni-dop	bed Bi ₂ Te ₃	60	
4.6	Electronic F	Properties of	of Ni-doped	d Bi2Se3	and Ni-dop	ed Bi2Te3	62	
4.7	The Effect of SOC on Thermoelectric Properties of Bi2Se3 and Bi2Te3						66	
	4.7.1 Thermopower of Bi2Se3 and Bi2Te3							
	4.7.2 Electrical Conductivity of Bi2Se3 and Bi2Te3							
	4.7.3 Thermal Conductivity of Bi2Se3 and Bi2Te3							
	4.7.4 Figure of Merit of Bi_2Se_3 and Bi_2Te_3							
4.8	Thermoelectric Properties of Ni-doped Bi2Se3 and Ni-doped Bi2Te3						76	
	4.8.1 Therm	nopower o	f Ni-doped	Bi2Se3	and Ni-dop	ed Bi2Te3	77	
	4.8.2 Electr	ical Conduc	ctivity of Ni	-doped Bi2	Se3 and Ni-c	loped Bi2Te3	79	
	4.8.3 Therm	nal Conduct	ivity of Ni-	doped Bi2S	Se3 and Ni-d	oped Bi2Te3	81	
	4.8.4 Figure	e of Merit	of Ni-dop	bed Bi ₂ Se ₃	and Ni-do	ped Bi ₂ Te ₃	83	
4.9	Thermoelectric Properties of Bi2Se3 and Bi2Te3 as a Function of Fermi Le							
							85	
СНА	PTER FIVE:	CONCLUS	SIONS				91	
5.1	Conclusions						91	
5.2	Recommendations						92	

vn