METHANOLIC EXTRACT OF Muntingia calabura LEAVES & Aloe vera GEL AGAINST SELECTED PATHOGENIC BACTERIA

NUR AISYAH IZZATI BINTI AZMAN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

This Final Year Project Report entitled "Methanolic Extract of *Muntingia calabura* Leaves & Aloe vera Gel against Selected Pathogenic Bacteria" was submitted by Nur Aisyah Izzati Binti Azman, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

> Mohd. Syahril bin Mohd. Zan Supervisor B. Sc. (Hons.) Biology Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan

Lili Syahani binti Rusli Project Coordinator B. Sc. (Hons.) Biology Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan Dr. Nor' aishah binti Abu Shah Head of Programme B. Sc. (Hons.) Biology Faculty of Applied Sciences UiTM Negeri Sembilan Kampus Kuala Pilah Pekan Parit Tinggi 72000 Kuala Pilah Negeri Sembilan

Date:_____

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	X

CHAPTER 1: INTRODUCTION

1.1	Background Study	1
1.2	Problem Statement	2
1.3	Significance of Study	3
1.4	Objectives of Study	3

CHAPTER 2: LITERATURE REVIEW

2.1	Muntingia calabura		
	2.1.1	Botanical and traditional uses of Muntingia calabura	4
	2.1.2	Significance of Muntingia calabura	7
	2.1.3	Antibacterial activity of Muntingia calabura	8
2.2	Aloe v	era	
	2.2.1	Botanical and traditional uses of Aloe vera	10
	2.2.2	Significance of <i>Aloe vera</i>	12
	2.2.3	Antibacterial activity of Aloe vera	13
2.3	Test organism		
	2.3.1	Escherichia coli	14
	2.3.2	Salmonella typhi	14
	2.3.3	Staphylococcus aureus	15
	2.3.4	Bacillus subtilis	15

CHAPTER 3: METHODOLOGY

3.1	Materials			
	3.1.1 Raw material	16		
	3.1.1.1 <i>Muntingia calabura</i> plant	16		
	3.1.1.2 <i>Aloe vera</i> plant	16		
	3.1.2 Chemicals	16		
	3.1.3 Test organisms	17		
	3.1.4 Apparatus	17		
3.2	Methods			
	3.2.1 Extraction of <i>Muntingia calabura</i> leaves	18		
	3.2.2 Extraction of <i>Aloe vera</i> gel	19		
	3.2.3 Preparation of filter paper disc	20		
	3.2.4 Antibacterial assay	20		
3.3	Statistical Analysis	22		
СНАРТ	FER 4: RESULTS AND DISCUSSION			
4.1	Methanolic extraction of Muntingia calabura and Aloe ve	era 24		
4.2	Antibacterial activity	25		

CHAPTER 5: CONCLUSIONS AND RECOMMEDATIONS 34

CITED REFERENCES	36
APPENDICES	39
CURRICULUM VITAE	45

ABSTRACT

METHANOLIC EXTRACT OF Muntingia calabura LEAVES & Aloe vera GEL AGAINST SELECTED PATHOGENIC BACTERIA

Muntingia calabura is the common roadside trees that had been neglected despite having medicinal values, while Aloe vera is the common plant used for antibacterial agent. Hence the purpose of this study is not only to identify and compare the effectiveness of antibacterial activity of both samples but also to provide ground prove of the advantages that can be taken from Muntingia calabura in terms of its antibacterial activity as alternative. From the study, there are significant difference of antibacterial activity between *M. calabura* and *Aloe vera* against the *E. coli*, *S.typhi*, S. aureus and B. subtilis as statistically analysis shows that p<0.05. The difference in diameters of zone of inhibition obtained through the study was also significant. It was found that methanolic extract of M. calabura showed greater inhibitions at 100 mg/mL and 50 mg/mL as compared to the synthetic drug, streptomycin. From Table 4.1, the highest mean value obtained at 100 mg/mL for E. coli, S. typhi, S. aureus and B. subtilis respectively was 3.33±5.77 mm, 12.00±1.00 mm, 9.00±7.81 mm, and 16.67±6.03 mm whereas Aloe vera showed none. To conclude, M. calabura extract showed promising potential as antibacterial agent compared to commonly used Aloe vera for future drug development. It was also found that the extract was dosedependent hence the studies can be done by using several higher dose concentrations and adding the biochemistry test to the plant extract.