

# PROGRAMMING OF CONTROL SYSTEM FOR SELF BALANCING SCOOTER

## MUHAMAD YUSUF BIN IBRAHIM (2005606906)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) Mechanical

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > **MAY 2009**

#### ACKNOWLEDGEMENT

Alhamdulillahi robbil A'lamin, to the Almighty, selawat and salam to our greatest Prophet Muhammad SAW, to all his family and also to his good companions.

Thousands of thank to my supervisor Mr. Mohd Asri Bin Mohd Nor, and co-supervisor Mr. Zulkifli Bin Mohamed for their continuous support, generous guidance, help, patience and encouragement in the duration of the thesis preparation until its completion. Besides that, I would like to thank the self balancing scooter project design team co-supervisor; Mr. Helmi Bin Rashid and Mrs. Nursalbiah Binti Nasir. Their advices really kept me going and help me to look into this project in perspectives.

Special thanks to Mr. Shahrulnizam Bin Mat Rejab, former research assistance from Electrical Engineering for his guidance in preparing the electrical hardware.

Not to be forgotten, I would like to thanks my parents, my house mates, and lots more names which are not on the list. This project would not have been like this if they had not given great support as this project really needs my commitment to the fullest. Thank you very much.

vi

### ABSTRACT

The aim of this project is to develop and implement a suitable programming for the Self balancing Scooter by using PIC Microcontroller. The self balancing scooter is a two wheeled self balancing vehicle which is capable of carrying via the wheels underneath the rider's of centre gravity. It involves the programming and. application of the control system to perform specific task. The programming will control the movement of the scooter. The program is developed by using PIC Microcontroller embedded in Custom Computer Services (CCS) PCWHD IDE Compiler software. The program will use the language of C-code. So, only certain command can be used in the language which than uses PIC Microcontroller as software to hardware interfacing

## **TABLE OF CONTENTS**

|           | CON          | TENTS                      | PAGE |
|-----------|--------------|----------------------------|------|
|           | PAGE         | ETITLE                     | v    |
|           | ACKI         | NOWLEDGEMENT               | vi   |
|           | ABST         | TRACT                      | vii  |
|           | TABI         | LE OF CONTENTS             | viii |
|           | LIST         | OF TABLES                  | xiii |
|           | LIST         | OF FIGURES                 | xiv  |
|           | LIST         | OF ABBREVATIONS            | xvi  |
| CHAPTER 1 | INTRODUCTION |                            |      |
|           | 1.1          | Background                 | 1    |
|           | 1.2          | Objectives                 | 3    |
|           | 1.3          | Problem Statement          | 3    |
|           | 1.4          | Significant of the Project | 4    |

| 1         | 1.5  | Scope               | of project                                             | 4  |
|-----------|------|---------------------|--------------------------------------------------------|----|
|           | 1.6  | Metho               | dology                                                 | 5  |
| CHAPTER 2 | LITE | RATURI              | E REVIEW                                               | 7  |
|           | 2.1  | The Se              | gway Model                                             | 7  |
|           | 2.2  | PIC Microcontroller |                                                        | 9  |
|           |      | 2.2.1 N             | Aicrocontroller versus Microprocessor                  | 12 |
|           |      | 2.2.2               | PIC Programming                                        | 12 |
|           |      | 2.2.3               | PCWHD IDE Compiler                                     | 13 |
|           |      | 2.2.4               | Description of an Embedded System                      | 13 |
|           |      | 2.2.5               | Differences between an Embedded<br>Controller and a PC | 14 |
|           | 2.3  | Inverte             | ed Pendulum Theory                                     | 14 |
|           |      | 2.3.1               | Equation of Motion                                     | 16 |
|           |      |                     |                                                        |    |

### CHAPTER 3 DEVELOPMENT OF CONTROL SYSTEM FOR SELF 18 BALANCING SCOOTER

| 3.1 | Introdu | Introduction                                         |    |  |  |  |
|-----|---------|------------------------------------------------------|----|--|--|--|
| 3.2 | Main (  | Main Component                                       |    |  |  |  |
|     | 3.2.1   | Programmable Interface Controller<br>(PIC16f877A)    |    |  |  |  |
|     | 3.2.2   | Start-up Kit                                         | 20 |  |  |  |
|     | 3.2.3   | Sensor                                               | 20 |  |  |  |
|     |         | 3.2.3.1 Gyroscope (ADXRS300)                         | 20 |  |  |  |
|     |         | 3.2.3.2 Piezo-tronic Voltage Source<br>Accelerometer | 22 |  |  |  |

.