UNIVERSITI TEKNOLOGI MARA

THE IMPLEMENTATION AND ANALYSIS OF WATER DRAINAGE DETECTION USING GROUND PENETRATING RADAR (GPR) TECHNOLOGY

MOHD RAMDAN BIN MOHAMAD

Thesis submitted in fulfillment of the requirements for the degree of Bachelor of Surveying Science and Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

July 2019

AUTHOR'S DECLARATION

I declare that the work in this disertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohd Ramdan bin Mohamad
Student I.D. No.	:	2016490756
Programme	:	Bachelor of Surveying Science and Geomatics (Hons.)– AP220
Faculty	:	Architecture, Planning and Surveying
Title	:	The Implementation and Analysis of Water Drainage Detection Using Ground Penetrating Radar (GPR) Technology
Signature of Student	:	

Date : July 2019

ABSTRACT

Groundwater is one of the natural resources of drinking water instead of the surface water. Determination of groundwater sources specifically in Malaysia has proven to be incompetent, destructive, time consuming and expensive. Hence this leads the need to adopt a well-established technique for hydrogeophysical prospection such as nondestructive and able to portray the subsurface heterogeneities. In this study, the potential of the Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect the groundwater has been examined. GPR has proved to be the most promising and suitable technological solution for efficient determination of groundwater. A control test on groundwater detection has been performed at the Kaki Bukit to Wang Kelian road in Perlis at the area that has occurring a landslide using the MALA ProEx GPR 250 MHz central frequency. Data was taken along 13 profile which are eight for longsectional profile and five for crossectional profile with interval two meter for the crossectional and one meter for the longsectional. Data from GPR detection are processed using the ReflexW software. Result have found that, water level depth was estimated in range from 5.06869m to 5.43311m for longsectional profile and in range from 5.44453m to 5.71105m for crossectional profile. The water flow also been identified in this result which is the water will be flow possibly to the west where there is a slope at that area. To improve the visualization and interpretation of the groundwater, the three dimensional model (3D) has been generated using ReflexW 3D software. The results show that this study ascertained the capability and effectiveness of the GPR is an efficient tool for the investigation of the water drainage.

TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS	PAGE i
AUTHOR'S DECLARATION	
SUPERVISOR'S DECLARATION	
ABSTRACT	
ACKNOWLEDGEMENT	
TABLE OF CONTENT	vi
LIST OF FIGURE	
LIST OF TABLE	
LIST OF ABBREVIATIONS	
CHAPTER ONE	1
INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	2
1.3 Research Aim and Objective	3
1.3.1 Research Aim	3
1.3.2 Research Objectives	3
1.3.3 Significance of Study	3
1.4 Scope and Limitation of Study	4
1.4.1 Scope of study	4
1.4.2 Limitation and Challenges	4
1.4.3 Study Area	6
1.5 Chapter Outline	6
CHAPTER TWO	
LITERATURE REVIEW	
2.1 Introduction	8
2.2 Ground Penetrating Radar (GPR)	8
2.2.1 Definition of Ground Penetrating Radar	8
2.2.2 History of GPR	9
2.2.3 Principle and Specification of Ground Penetrating Radar	11
2.2.3.1 Ground Penetrating Radar Operation	11
2.2.3.2 Penetration Depth and Resolution	13

,	2.2.3.3 Electromagnetic Wave Propagation	16	
2.2	2.4 Applications of GPR	18	
2.3	JUPEM Standard Guidelines	19	
2.3	19		
2.3	19		
2.4	Groundwater	20	
2.4	21		
2.5	Groundwater Flow	22	
2.5	24		
,	24		
,	2.5.1.2 Confined Aquifers	24	
2.6 Water table		25	
2.7	Three Dimensional Modelling (3D Model)	26	
CHAPTER THREE		27	
METHODOLOGY		27	
3.1	27		
3.2	Research Methodology	27	
3.3	Preliminary Study	29	
3.3.1 Location of study		30	
3.3	Instrument and Software	31	
3.4	Data collection	34	
3.5	Data Processing	35	
3.5	Move Start Time	35	
3.5.2 Dynamic Correction		36	
3.5	Background Removal	37	
3.5	5.4 Gain Function	37	
3.5.5 Subtract Mean (Dewow)		38	
3.5.6 Bandpassbutterworth		39	
3.5	5.7 Baseline Processing	40	
3.6	Result and Analysis	42	
CHAPTER FOUR		43	
RESULT AND ANALYSIS			
4.1	4.1 Introduction		
4.2	Identification of groundwater level	43	