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Abstract 

In this article, a semi analytical iterative method had been applied to solve a type of partial 

differential equation namely Klein-Gordon equation. Four examples of linear and nonlinear 

Klein-Gordon equations were considered to show the performance of the method. The results 

obtained revealed the effectiveness of this method. 
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Introduction 

The Klein-Gordon equation is an important model in mathematical physics such as quantum 

field theory, soliton and plasma physics. Due to its wide range of applications, Klein-Gordon 

equation has attracted much attention to find the accurate and efficient method for solving the 

equation. Some of these methods are Adomian decomposition method (Wazwaz, 2006; El-

Sayed, 2003; Rabie, 2015; Agom & Ogunfiditimi, 2018; Kulkarni & Kalyanrao, 2015), 

homotopy perturbation method (Chowdhury & Hashim, 2009), variational homotopy 

perturbation method (Yousif & Mahmood, 2017), Laplace decomposition method (Rabie, 

2015), Elzaki iterative method (Alderremy et al., 2018), Elzaki transform method (Ige et al., 

2019) and homotopy Sumudu transform method (Mahdy et al., 2015). 

The purpose of this paper is to solve the Klein-Gordon equation by applying an analytical 

method called semi analytical iterative method (SAIM). This method was proposed by Temimi 

and Ansari (2011a; 2011b) in order to solve nonlinear differential equations and nonlinear 

second order multi-point boundary value problems, respectively. Then, the SAIM has been 

successfully implemented by many researchers for solving others linear and nonlinear 

differential equations problem. For example, wave, wave-like, heat and heat-like problems 

(AL-Jawary & Mohammed, 2015), chemistry problems (AL-Jawary & Raham, 2017), thin 

flow problems (Al-Jawary, 2017), Blasius equations (Selamat et al., 2019), Newell-Whitehead-

Segel equations (Latif et al., 2020), Fokker-Plank’s equations (AL-Jawary et al., 2017), 

nonlinear Burgers and advection-diffusion equations (AL-Jawary et al., 2018), differential 

algebraic equations (AL-Jawary & Hatif, 2017), duffing equation (Al-Jawary & Al-Razaq, 

2016) and some nonlinear differential equations in physics (AL-Jawary et al., 2020). 
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Materials and Methods 

 

Semi Analytical Iterative Method 

In this section, we presented the semi analytical iterative method (SAIM) which is introduced 

by Temimi and Ansari (2011a, 2011b) and detailed by Al-Jawary and Mohammed (2015): 

Consider the general differential equation, 

 𝐿(𝑢(𝑥, 𝑡)) + 𝑁(𝑢(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡) = 0, (1) 

 

with boundary conditions 𝐵 (𝑢,
𝜕𝑢

𝜕𝑡
) = 0,  

 

where 𝑢 is unknown function, 𝐿 is the linear operator, 𝑁 is the nonlinear operator and 𝑔 is a 

known function. Noticed that, it is possible to take some or all parts of the 𝑔(𝑥, 𝑡) and add them 

to the nonlinear operator 𝑁 as needed. The proper choice of these parts depends mainly on trial 

basis. 

 

By assuming that 𝑢0(𝑥, 𝑡) is a solution of equation (1) of the initial condition  

 

 𝐿(𝑢0(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡) = 0, with 𝐵 (𝑢0,
𝜕𝑢

𝜕𝑡
) = 0. (2) 

 

The next iteration found by resolved the following equation: 

 

 𝐿(𝑢1(𝑥, 𝑡)) + 𝑁(𝑢0(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡) = 0, with 𝐵 (𝑢1,
𝜕𝑢

𝜕𝑡
) = 0.  (3) 

 

Thus, an iterative procedure can be created by solving the following problem, 

 

 𝐿(𝑢𝑛+1(𝑥, 𝑡)) + 𝑁(𝑢𝑛(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡) = 0, with 𝐵 (𝑢𝑛+1,
𝜕𝑢

𝜕𝑡
) = 0,  (4) 

 

where, 𝑛 = 1, 2, … . Each of 𝑢𝑛 are solution of the equation (1). 

 

 

Solution of Klein-Gordon Equation Using SAIM 

 

The general equation of Klein-Gordon equation can be written as: 

 

 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑏1𝑢 + 𝑏2𝑔(𝑢) = 𝑓(𝑥, 𝑡) (5) 

 

with boundary condition 

 

 𝑢(𝑥, 0) = 𝑐1 and 𝑢𝑡(𝑥, 0) = 𝑐2 (6) 

 

In view of SAIM, we have 𝐿(𝑢(𝑥, 𝑡)) = 𝑢𝑡𝑡 , 𝑁(𝑢(𝑥, 𝑡)) = −𝑢𝑥𝑥 + 𝑏1𝑢 + 𝑏2𝑔(𝑢) and 

𝑔(𝑥, 𝑡) = −𝑓(𝑥, 𝑡). 
 

Thus, the primary problem to solve is, 

 

 𝐿(𝑢0(𝑥, 𝑡)) = 𝑓(𝑥, 𝑡)  (7) 

 

or, 
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with 𝑢0(𝑥, 0) = 𝑐1 and (𝑢0)𝑡(𝑥, 0) = 𝑐2. 

The general iteration problem can be done through the following 

 

 𝐿(𝑢𝑛+1(𝑥, 𝑡)) + 𝑁(𝑢𝑛(𝑥, 𝑡)) + 𝑔(𝑥, 𝑡) = 0,  (9) 

 

or,  

 (𝑢
𝑛+1

)
𝑡𝑡

− (𝑢𝑛)𝑥𝑥 + 𝑏1𝑢𝑛 + 𝑏2𝑔(𝑢𝑛) = 𝑓(𝑥, 𝑡) (10)  

 

 

with  𝑢𝑛+1(𝑥, 0) = 𝑐1 and (𝑢𝑛+1)𝑡(𝑥, 0) = 𝑐2, where, 𝑛 = 1, 2, … . 

 

 

Example 1: 

 

Consider the linear homogeneous Klein-Gordon equation (Chowdhury & Hashim, 2009) 

 

 𝑢𝑡𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) = 𝑢(𝑥, 𝑡),  (11) 

 

with initial condition, 

 

 𝑢(𝑥, 0) = 1 + sin(𝑥), 𝑢𝑡(𝑥, 0) = 0 (12) 

 

where, the exact solution is, 

 

 𝑢(𝑥, 𝑡) = sin(𝑥) + cosh(𝑡) . (13) 

 

 

The SAIM will be applied as, 𝐿(𝑢(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡), 𝑁(𝑢(𝑥, 𝑡)) = −𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) and 

𝑔(𝑥, 𝑡) = 0. 

 

Thus, the primary problem is 

 

 𝐿(𝑢0(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡) = 0  (14) 

 

with initial conditions, 

 

 𝑢0(𝑥, 0) = 1 + sin(𝑥), (𝑢0)𝑡(𝑥, 0) = 0 (15) 

 

 

By solving the primary problem (14), we obtained, 

 

 𝑢0(𝑥, 𝑡) = sin(𝑥) + 1. (16) 

  

The first repetition can be done through the following 

 

 (𝑢
0
)

𝑡𝑡
(𝑥, 𝑡) = 𝑓(𝑥, 𝑡) (8) 
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 (𝑢1)𝑡𝑡(𝑥, 𝑡)−(𝑢0)𝑥𝑥(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡), (17) 

 

 

with initial conditions, 𝑢1(𝑥, 0) = 1 + sin(𝑥), (𝑢1)𝑡(𝑥, 0) = 0. 

Then, the solution of (17) is, 

 

 

 

𝑢1(𝑥, 𝑡) = sin(𝑥) + 1 +
1

2
𝑡2. (18) 

Similarly, we obtained, 

 

 
𝑢2(𝑥, 𝑡) = sin(𝑥) + 1 +

1

2
𝑡2 +

1

24
𝑡4 

(19) 

 

 
𝑢3(𝑥, 𝑡) = sin(𝑥) + 1 +

1

2
𝑡2 +

1

24
𝑡4 +

1

720
𝑡6 

(20) 

 

 ⋮  

 

Hence, when 𝑛 → ∞, the solution will lead to the close form 

 

 𝑢(𝑥, 𝑡) = sin(𝑥) + cosh(𝑡) , (21) 

 

which is the exact solution of equation (11). 

 

 

Example 2: 

 

Consider the linear nonhomogeneous Klein-Gordon equation (Chowdhury & Hashim, 2009) 

 

 

 𝑢𝑡𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) = −2 sin(𝑥) sin(𝑡),  (22) 

 

with initial condition 

 

 𝑢(𝑥, 0) = 0, 𝑢𝑡(𝑥, 0) = sin(𝑥),  (23) 

 

where the exact solution is 

 

 𝑢(𝑥, 𝑡) = sin(𝑡) sin(𝑥).  (24) 

 

The SAIM will be applied as: 𝐿(𝑢(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡), 𝑁(𝑢(𝑥, 𝑡)) = −𝑢𝑥𝑥(𝑥, 𝑡) − 2𝑢(𝑥, 𝑡) +

2 sin(𝑥) sin(𝑡) and 𝑔(𝑥, 𝑡) = 0 

 

Thus, the primary problem is 

 

 𝐿(𝑢0(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡) = 0,  (25) 

 

with initial conditions 

 

 𝑢0(𝑥, 0) = 0, (𝑢
0
)

𝑡
(𝑥, 0) = sin(𝑥).  (26) 
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By solving the primary problem (25), we obtained, 

 

 𝑢0(𝑥, 𝑡) = 𝑡 sin(𝑥).  (27) 

The first repetition can be done through the following 

 

 (𝑢1)
𝑡𝑡

(𝑥, 𝑡) − (𝑢0)𝑥𝑥(𝑥, 𝑡) − 2𝑢0(𝑥, 𝑡) = −2 sin(𝑡) sin(𝑥),  (28) 

 

with initial conditions, 𝑢1(𝑥, 0) = 0, (𝑢1)𝑡(𝑥, 0) = sin(𝑥). 
 

Then, the solution of (28) is, 

 

 
𝑢1(𝑥, 𝑡) = (

𝑡3

6
− 𝑡 + 2 sin(𝑡)) sin(𝑥) 

(29) 

Similarly, we obtained 

 

 
𝑢2(𝑥, 𝑡) = (

𝑡5

120
−

𝑡3

6
+ 𝑡) sin(𝑥) 

(30) 

 

 
𝑢3(𝑥, 𝑡) = (

𝑡7

5040
−

𝑡5

120
+

𝑡3

6
− 𝑡 + 2 sin(𝑡)) sin(𝑥) 

(31) 

 

 ⋮  

 

Hence, when 𝑛 → ∞, the solution will lead to the close form 

 

 𝑢(𝑥, 𝑡) = sin(𝑡) sin(𝑥), (32) 

 

which is the exact solution. 

 

 

Example 3: 

 

Consider the nonlinear nonhomogeneous Klein-Gordon equation (Chowdhury & Hashim, 

2009) 

 

 𝑢𝑡𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)2 = −𝑥 cos(𝑡) + 𝑥2 cos2(𝑡),  (33) 

 

with initial conditions 

 

 𝑢(𝑥, 0) = 𝑥, 𝑢𝑡(𝑥, 0) = 0,  (34) 

where the exact solution is  

 

 𝑢(𝑥, 𝑡) = 𝑥 cos(𝑡).  (33) 

 

The SAIM will be applied as: 𝐿(𝑢(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡), 𝑁(𝑢(𝑥, 𝑡)) = −𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)2 −

𝑥2 cos2(𝑡) and 𝑔(𝑥, 𝑡) = −𝑥 cos(𝑡). 
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Thus, the primary problem is 

 

 𝐿(𝑢0(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡) = −𝑥 cos(𝑡),  (35) 

 

with initial conditions 

 

 𝑢0(𝑥, 0) = 𝑥, (𝑢0)
𝑡
(𝑥, 0) = 0.  (36) 

 

 

By solving the primary problem (35), we obtained, 

  

 𝑢0(𝑥, 𝑡) = 𝑥 cos(𝑡).  (37) 

 

The first repetition can be done through the following 

 

 (𝑢1)𝑡𝑡(𝑥, 𝑡) − (𝑢
0

)
𝑥𝑥

(𝑥, 𝑡) − 𝑢0(𝑥, 𝑡)2 = −𝑥 cos(𝑡)(1 − 𝑥 cos(𝑡)),  (38) 

 

with initial conditions, 𝑢1(𝑥, 0) = 𝑥, (𝑢1)𝑡(𝑥, 0) = 0. 
 

Then, the solution of (38) is  

 

 𝑢1(𝑥, 𝑡) = 𝑥 cos(𝑡),  (37) 

 

Similarly, the higher order solutions are 𝑥 cos 𝑡 which is, the exact solution (Wazwaz, 2006) 

 

 𝑢(𝑥, 𝑡) = 𝑥 cos(𝑡). (38) 

 

 

Example 4: 

 

Consider the nonlinear nonhomogeneous Klein-Gordon equation (Chowdhury & Hashim, 

2009) 

 

 𝑢𝑡𝑡(𝑥, 𝑡) − 𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)2 = 6𝑥𝑡(𝑥2 − 𝑡2) + 𝑥6𝑡6,  (39) 

 

with initial conditions 

 

 𝑢(𝑥, 0) = 0, 𝑢𝑡(𝑥, 0) = 0, (40) 

 

where the exact solution is 

 

 𝑢(𝑥, 0) = 0, 𝑢𝑡(𝑥, 0) = 0, (41) 

 

The SAIM will be applied as: 𝐿(𝑢(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡), 𝑁(𝑢(𝑥, 𝑡)) = −𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡)2 −

6𝑥𝑡3 + 𝑥6𝑡6 and 𝑔(𝑥, 𝑡) = 6𝑥3𝑡. 

 

Thus, the primary problem is 

 

 𝐿(𝑢0(𝑥, 𝑡)) = 𝑢𝑡𝑡(𝑥, 𝑡) = 6𝑥3𝑡,  (42) 
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with initial conditions 

 𝑢0(𝑥, 0) = 0, (𝑢0)
𝑡
(𝑥, 0) = 0.  (43) 

 

By solving the primary problem (42), we obtained, 

 

 𝑢0(𝑥, 𝑡) = 𝑥3𝑡3,  (44) 

 

The first repetition can be done through the following 

 

 (𝑢1)
𝑡𝑡

(𝑥, 𝑡) − (𝑢
0

)
𝑥𝑥

(𝑥, 𝑡) − 𝑢0(𝑥, 𝑡)2 = 6𝑥𝑡(𝑥2 − 𝑡2) + 𝑥6𝑡6,  (45) 

 

with initial conditions, 𝑢1(𝑥, 0) = 0, (𝑢1)𝑡(𝑥, 0) = 0. 
 

Then, the solution of (45) is 

 

 𝑢1(𝑥, 𝑡) = 𝑥3𝑡3,  (46) 

 

Similarly, the higher order solutions are 𝑥3𝑡3 which is the exact solution (Wazwaz, 2006) 

 

 𝑢(𝑥, 𝑡) = 𝑥3𝑡3.  (47) 

 

 

Conclusion 

In this paper, the SAIM has been successfully applied to obtain the exact solution of some 

examples of linear and nonlinear Klein-Gordon equations. It is appeared that the SAIM is very 

efficient to yield the solution without required any restricted assumption to deal with nonlinear 

terms in differential equations. 
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