UNIVERSITI TEKNOLOGI MARA

THE IMPACT OF URBANIZATION ON FLOOD IN KLANG VALLEY

NUR NASUHAH BINTI ABDULLAH

Thesis submitted in fulfillment of the requirements for the degree of **Bachelor of Surveying Science and Geomatics**

Faculty of Architecture, Planning and Surveying

July 2019

AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student : Nur Nasuhah binti Abdullah

Student I.D. No. : 2015111175

Programme : Bachelor of Surveying Science and Geomatics

Faculty : Architecture, Planning and Surveying

Thesis : The Impact of Urbanization on Flood in Klang Valley

Signature of Student :

Date : July 2019

ABSTRACT

Changes in land use associated with urban development affect flooding in many ways. Removing vegetation and soil, grading the land surface, and constructing drainage networks increase runoff to streams from rainfall and snowmelt. Flash foods are common phenomena in the capital city of Malaysia. Every year, the city experiences several flash floods and Klang Valley is one of the worst-hit flash flood district affected by the flood. This research aimed at determine the impact of urbanization and land changes on flood in Klang Valley which focused at the Mass Rapid Transit (MRT) area, three MRT station that were chosen is MRT Batu Sebelas Cheras (SBK 30), MRT Bukit Dukung (SBK 31), MRT Sungai Jernih (SBK 33). The data set that was used in this study is Landsat 5 (TM) and Landsat 8 (OLI) satellite image, this image is used in land classification for year 2010, 2014 and 2018 as this study starts at the pre development of MRT, during development of MRT and post development of MRT. Rainfall data is also used in order to calculate the surface runoff, rational method was used in calculating the runoff by using other parameter such as runoff coefficient and catchment area. The Land changes analysis and Rainfall-runoff analysis were done in this research study.

TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF ABBREVATIONS	xi
CHAPTER ONE	1
INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	4
1.3 Research Aim and Objectives	5
1.4 Research Question	5
1.5 Scope and Limitation of Study	5
1.5.1 Scope of work	6
1.5.2 Limitation and challenges	6
1.6 Summary	6
CHAPTER TWO	7
LITERATURE REVIEW	7
2.1 Introduction	7
2.2 LULC	7
2.4.1 Land Use Map	8
2.3 Urbanization	8
2.4 Flood	10
2.5 Flood in Malaysia	10
2.5.1 Monsoon Flood	12
2.5.2 Flash Flood	12

2.6 Drainage System	12
2.6.1 Deep open drains	13
2.6.2 Pipe drains	13
2.7 Surface Runoff	14
2.8 Satellite Image	15
2.8.1 Landsat 5	17
2.8.2 Landsat 8	18
2.9 Classification	20
2.9.1 Supervised Classification	20
2.9.2 Unsupervised Classification	21
2.11 Summary	22
CHAPTER THREE	23
METHODOLOGY	23
3.1 Introduction	23
3.2 Detail Methodology	23
3.3 Study Area	25
3.4 Software used	26
3.4.1 ERDAS	26
3.4.2 QGIS Software	26
3.4.3 Microsoft Excel	26
3.5 Data Acquisition	27
3.6 Data Processing	29
3.6.1 Pre Processing	29
3.6.2 Unsupervised Classification	37
3.7 Runoff Estimation	39
3.8 Summary	39
CHAPTER FOUR	40
RESULT AND DISCUSSION	40
4.1 Introduction	40
4.2 Land use and Land Cover of Study Area	42
4.5 Runoff Estimation	45
CHAPTER FIVE	48
CONCLUSION AND RECOMMENDATIONS	48