DETERMINING THE STEADY-STATE PROBABILITY FOR THE DAILY MAXIMUM TEMPERATURE IN PENINSULAR MALAYSIA USING MARKOV CHAIN

Suriani Hassan ${ }^{1}$ and Husna Hasan ${ }^{2}$
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
*corresponding author: ${ }^{1}$ surianihassan@gmail.com; ${ }^{2}$ husnahasan@usm.my

Abstract

ARTICLE HISTORY ABSTRACT

Received 22 May 2017 Received in revised form 6 June 2017 Accepted 20 June 2017

The objective of this study was to determine the steady-state probability for the daily maximum temperature in Peninsular Malaysia. Data of daily maximum temperature from Malaysian Meteorological Department were analyzed. Ten stations in Peninsular Malaysia were examined. The transition count, chi-square test, transition probability and steady-state probability were obtained. The steady-state probability results showed that after a sufficiently long time, there was a high probability for the stations to encounter the slightly warm temperature, with the range of maximum temperature from $30.1^{\circ} \mathrm{C}$ to $34.0^{\circ} \mathrm{C}$, except Chuping and Alor Setar tend to be warmer with the range of maximum temperature from $38.1^{\circ} \mathrm{C}$ to $42.0^{\circ} \mathrm{C}$ and Muadzam Shah tend to be in warm state with the range of maximum temperature from $34.1^{\circ} \mathrm{C}$ to $38.0^{\circ} \mathrm{C}$. The importance of knowing the steady-state probability of slightly cool, neutral, slightly warm, warm and hot temperature would help the citizens with the awareness and effects of climate warming.

Keywords: daily maximum temperature; Markov Chain; steady-state probability.

1. INTRODUCTION

As defined by Wikipedia, "temperature is an objective comparative measure of hot or cold" (Wikipedia, 2016). Field et al. (2012) suggested many places in the world are suffering from climate warming. Gayo and Tolosa (2015) proposed the earth is getting warmer unless drastic actions were taken to reduce the effects of heat globally. Water resources, coastal resources, forestry, agriculture and health were some of the impacts of climate change.

Dai et al. (2016) suggested in the study the need to assess climate trends for agriculture. The data for the study were during the period of 1980 up to 2013 for 12 Midwestern US states and the result showed that during the end of the growing season especially in September, the maximum temperature rose faster. Wolfe (2013) stated the risk of crop failure increased because of climate warming. According to Gan et al. (2015), the daily maximum temperature was predicted to increase by up to $8.0^{\circ} \mathrm{C}$ in Africa.

Lumioan (2011) reported in Philippine Daily Inquirer that the maximum recorded temperature of all-time in National Capital Region, Philippine was on May 14, 1987, which was recorded as $38.5^{\circ} \mathrm{C}$. The frequency of hot days and warm nights in many locations in Philippine had significantly increased during 1960 until 2003 as reported by Philippine Atmospheric,

[^0]Geophysical \& Astronomical Services Administration (PAGASA) in Gayo and Tolosa (2015).

According to Tan et al. (2007), heat wave occurred when the daily maximum temperature for a specified number of days exceeded a critical threshold defined medically. National Weather Service illustrated heat wave as "a period of abnormally and uncomfortably hot and unusually humid weather" with length of two or more days (National Weather Service, 2016). Kunst et al. (1993), Curriero et al. (2002) and Hajat et al. (2002) in Keellings and Waylen (2011) suggested high temperature could increase death rates when temperature rose above the local population's threshold or critical value.

In measuring the risk of high temperature events above the critical temperature threshold, Keellings and Waylen (2011) built simple stochastic models. The study used the historic datasets maximum daily temperature from meteorological stations in Lake City, DeFuniak Springs, Avon Park, and Fort Myers, Florida from 1890s to 2008. The study reflected the significance of statistical stochastic variables related to the events of the high temperature or heat waves. Nott et al. (2001) used daily maximum temperature data of 29 stations in the Sydney area to illustrate the used of Markov chain methods for computation. Barkotulla and Rahman (2012) investigated prediction transition probabilities for environmental impact analysis and concluded that the Markov chain model was suitable in the field of environmental sciences.

Hasan (2015) studied the long-run proportion of time for the daily maximum temperature for five stations in the Northern part of Malaysia for the duration of ten years. The result showed that after a sufficiently long time, Malaysia would still be experiencing slightly warm temperature. Bernama (2016) reported Chuping and Alor Setar experienced hot weather with the recorded temperature $39.1^{\circ} \mathrm{C}$ and $39.0^{\circ} \mathrm{C}$ respectively.

The objective of this study was to determine the steady-state probability for the daily maximum temperature for ten stations in Peninsular Malaysia for the duration of twenty years. This study was a further exploration on the study done by Hasan (2015). The importance of knowing the steady-state probability the range of maximum temperature for each studied stations whether it was slightly cool, neutral, slightly warm, warm and hot temperature would help the citizens with the awareness and effects of climate warming.

The secondary data of daily maximum temperature from Malaysian Meteorological Department were analyzed. Ten stations in Peninsular Malaysia were examined; Chuping, Alor Setar, Bayan Lepas, Kota Bharu, Kuala Terengganu, Muadzam Shah, KLIA, Malacca, Mersing and Senai. Data of daily maximum temperature were from January 1, 1994 up to December 31, 2013 except KLIA which are from July 1, 1998 up to December 31, 2013.

[^1]
2. METHODOLOGY

As mentioned, the data of daily maximum temperature comprised of ten stations in Peninsular Malaysia. These stations were chosen to represent several locations in Peninsular Malaysia. The transition count, chi-square test, transition probability and steady-state probability were obtained.

According to Gayo and Tolosa (2015), Markov Chain process is "where the outcome of a given experiment can affect the outcome of the next experiment". Referring to Adam (2016), the Markov Chain stochastic process with continuous parameter $X_{n}, n \geq 0$:

$$
\mathrm{P}\left[\mathrm{X}_{n+1}=j / \mathrm{X}_{n}=i, \mathrm{X}_{n-1}=i, n-1 \ldots \mathrm{X}_{1}=i, \mathrm{X}_{0}\right]=\mathrm{P}_{i j} \ldots(1)
$$

for all states $i_{1}, \ldots, i_{n-1}, i, j$ and $n \geq 1$.
Hasan (2015) stated the transition count matrix, $M_{n \times n}=\left[M_{i j}\right]$ where $\{i=1,2, \ldots, n ; j=1,2, \ldots, n\}$ and n depended on the number of states present.

The chi-square test was used to test the independent of the stations. According to McClave et al. (2014), the formula for the chi-square statistic used in the chi square test was

$$
X_{c}^{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

where the subscript "c" was the degrees of freedom, "O" was the observed value of the frequency states of transition for daily maximum temperature and E was the expected value states of transition for daily maximum temperature.

Table 1 shows the states of transition and range of temperature according to Lin and Matzarakis (2008) to determine the state of transition for this study.

Table 1: State of Transition and Range of Temperature

State of transition	Range of temperature
Slightly cool (C)	$22.1-26.0$
Neutral (N)	$26.1-30.0$
Slightly warm (S)	$30.1-34.0$
Warm (W)	$34.1-38.0$
Hot (H)	$38.1-42.0$

3. RESULTS AND DISCUSSION

3.1 The Lowest and Highest Daily Maximum Temperature for Each Station

The results in Table 2 show the lowest and highest daily maximum temperature for each station. The results show the lowest daily maximum temperatures are between $23.3^{\circ} \mathrm{C}$ to $25.1^{\circ} \mathrm{C}$. Therefore, all stations fell in the category slightly cool state of transition for the

[^2]lowest daily maximum temperature. Chuping station had the highest daily maximum temperature, $40.1^{\circ} \mathrm{C}$ followed by Alor Setar station, $39.1^{\circ} \mathrm{C}$, which fall into the category of hot state of transition. While other stations fell in the category warm state of transition for the highest daily maximum temperature.

Table 2: The Lowest and Highest Daily Maximum Temperature for Each Station

Location	Lowest Daily Maximum Temperature	Highest Daily Maximum Temperature
Chuping	23.7	40.1
Alor Setar	24.8	39.1
Bayan Lepas	25.1	35.6
Kota Bharu	23.8	36.4
Kuala Terengganu	23.8	35.8
Muadzam Shah	23.3	37.3
KLIA	24.2	37.2
Melaka	24.4	38.0
Mersing	23.6	36.2
Senai	23.4	37.2

3.2 Transition Count for Daily Maximum Temperature

Table 3 shows the frequency states of transition for each ten stations in Peninsular Malaysia. The results illustrated that most of the maximum daily temperature for these ten stations were slightly warm, which are between $30.1^{\circ} \mathrm{C}$ to $34.0^{\circ} \mathrm{C}$. Chuping in Perlis and Alor Setar in Kedah encountered hot temperature, with the range daily maximum temperature between $38.1^{\circ} \mathrm{C}$ to $42.0^{\circ} \mathrm{C}$.

Table 3: Frequency States of Transition for Daily Maximum Temperature

	State of Transition				
Location	Slightly cool	Neutral	Slightly warm	Warm	Hot
Chuping	30	568	5084	1587	35
Alor Setar	22	529	5325	1400	5
Bayan Lepas	6	721	6418	159	0
Kota Bharu	61	1593	5465	185	0
Kuala Terengganu	53	1441	5620	190	0
Muadzam Shah	92	835	4761	1610	0
KLIA	7	507	4748	400	0
Melaka	20	611	6113	560	0
Mersing	85	1809	5233	177	0
Senai	62	944	5817	481	0

[^3]
3.3 Chi-square Test

A test of independence using Chi-square test was performed. The null hypothesis statement was the states of transition were independent of the stations. The alternative hypothesis statement was the states of transition were dependent of the stations. For the possibility of the chi-square test result for this study, the frequency states of transition count for daily maximum temperature for warm and hot were combined. The test statistics obtained was 7454.0209 with the p -value of 0.0000 . The null hypothesis was rejected. The chi-square result showed that the states of transition were significantly dependent of the stations.

3.4 Transition Probability for Daily Maximum Temperature

Table 4 shows the transition probability for daily maximum temperature for ten stations. We can see that both Chuping and Alor Setar stations showed no records of the transition from the state of slightly cool moving to the state of hot. There were no records of the transition from the state of slightly cool moving to the state of warm and hot for all other stations in Peninsular Malaysia. In addition, all stations showed no evidence of the warm state moving to slightly cool state, except for Chuping station with a very small probability 0.0006 .

[^4]Table 4: Transition Probability for Daily Maximum Temperature

Location		State of transition				
		Slightly cool (C)	Neutral (N)	Slightly warm (S)	Warm (W)	Hot (H)
Chuping	C	0.0667	0.5000	0.4333	0.0000	0.0000
	N	0.0264	0.2817	0.6849	0.0070	0.0000
	S	0.0024	0.0751	0.8236	0.0985	0.0004
	W	0.0006	0.0069	0.3119	0.6698	0.0107
	H	0.0000	0.0000	0.0000	0.5429	0.4571
Alor Setar	C	0.0000	0.5000	0.5000	0.0000	0.0000
	N	0.0151	0.2722	0.7032	0.0095	0.0000
	S	0.0026	0.0684	0.8505	0.0785	0.0000
	W	0.0000	0.0071	0.2950	0.6950	0.0029
	H	0.0000	0.0000	0.0000	0.8000	0.2000
Bayan Lepas	C	0.0000	0.5000	0.5000	0.0000	
	N	0.0042	0.2621	0.7337	0.0000	
	S	0.0005	0.0824	0.9004	0.0167	
	W	0.0000	0.0000	0.6730	0.3270	
Kota Bharu	C	0.1967	0.6885	0.1148	0.0000	
	N	0.0264	0.6842	0.2888	0.0006	
	S	0.0013	0.0840	0.8935	0.0212	
	W	0.0000	0.0108	0.6216	0.3676	
Kuala Terengganu	C	0.0755	0.6415	0.2830	0.0000	
	N	0.0264	0.6440	0.3296	0.0000	
	S	0.0020	0.0851	0.8980	0.0149	
	W	0.0000	0.0053	0.4368	0.5579	
Muadzam Shah	C	0.2609	0.5000	0.2391	0.0000	
	N	0.0515	0.3760	0.5401	0.0323	
	S	0.0053	0.0914	0.7477	0.1556	
	W	0.0000	0.0254	0.4516	0.5230	
KLIA	C	0.1429	0.2857	0.5714	0.0000	
	N	0.0059	0.1992	0.7909	0.0039	
	S	0.0006	0.0842	0.8673	0.0478	
	W	0.0000	0.0100	0.5650	0.4250	
Malacca	C	0.2000	0.4500	0.3500	0.0000	
	N	0.0115	0.1849	0.8036	0.0000	
	S	0.0015	0.0788	0.8757	0.0440	
	W	0.0000	0.0125	0.4679	0.5196	
Mersing	C	0.1765	0.6824	0.1412	0.0000	
	N	0.0310	0.5959	0.3698	0.0033	
	S	0.0027	0.1261	0.8488	0.0224	
	W	0.0000	0.0734	0.6215	0.3051	
Senai	C	0.1613	0.5484	0.2903	0.0000	
	N	0.0297	0.2595	0.6981	0.0127	
	S	0.0041	0.1126	0.8379	0.0454	
	W	0.0000	0.0229	0.5509	0.4262	

[^5]
3.5 Steady-State for Daily Maximum Temperature

Table 5 shows the results of steady state or achieved the limit probabilities for daily maximum temperature for ten stations. After a sufficiently long time, there was a high probability for the studied stations in Peninsular Malaysia encounter the slightly warm temperature, with the range of maximum temperature from $30.1^{\circ} \mathrm{C}$ to $34.0^{\circ} \mathrm{C}$.

Bayan Lepas, KLIA and Malacca stations are among the lowest steady-state proportion encountered slightly cool temperature but among the highest steady-state proportion encountered slightly warm temperature, compared to the other seven stations. The result of this study consistent with Hasan (2015) that there was a high probability for the stations in Peninsular Malaysia encountered the slightly warm temperature followed by warm temperature.

The Mersing station had the highest steady-state proportion encountered neutral temperature, with the range of daily maximum temperature from $26.1^{\circ} \mathrm{C}$ to $30.0^{\circ} \mathrm{C}$, followed by Kota Bharu and Kuala Terengganu stations. The Bayan Lepas station had the highest steady-state proportion encountered slightly warm temperature, with the range of daily maximum temperature from $30.1^{\circ} \mathrm{C}$ to $34.0^{\circ} \mathrm{C}$, followed by KLIA and Malacca stations. The Chuping and Muadzam Shah stations had the highest steady-state proportion encountered the warm temperature, with the range of daily maximum temperature from $34.1^{\circ} \mathrm{C}$ to $38.0^{\circ} \mathrm{C}$, followed by Alor Setar station.

The Chuping and Alor Setar stations were the only stations encountered the hot temperature, with the range of daily maximum temperature from $38.1^{\circ} \mathrm{C}$ to $42.0^{\circ} \mathrm{C}$. The result that Chuping and Alor Setar experienced hot temperature consistent with Bernama (2016) which reported Chuping and Alor Setar experienced hot weather with the recorded temperature $39.1^{\circ} \mathrm{C}$ and $39.0^{\circ} \mathrm{C}$ respectively. The significance of this study compared to Hasan (2015) was the additional results that Chuping and Alor Setar experienced hot temperature, and Muadzam Shah encountered warm temperature due to the duration the data of daily maximum temperature for twenty years with ten locations in Peninsular Malaysia.

Table 5: Limiting Probabilities for Daily Maximum Temperature

	State of Transition				
Location	Slightly cool	Neutral	Slightly warm	Warm	Hot
Chuping	0.0041	0.0778	0.6961	0.2173	0.0048
Alor Setar	0.0030	0.0727	0.7314	0.1923	0.0007
Bayan Lepas	0.0008	0.0987	0.8787	0.0218	
Kota Bharu	0.0084	0.2181	0.7482	0.0253	
Kuala Terengganu	0.0073	0.1973	0.7694	0.0260	
Muadzam Shah	0.0126	0.1146	0.6522	0.2206	
KLIA	0.0012	0.0896	0.8388	0.0704	
Malacca	0.0027	0.0837	0.8369	0.0767	
Mersing	0.0116	0.2477	0.7165	0.0242	
Senai	0.0085	0.1294	0.7963	0.0658	

[^6]
4. CONCLUSION

Data of daily maximum temperature for ten locations were analysed. The objective of this study was to determine the steady-state probability for the daily maximum temperature in Peninsular Malaysia. The steady-state results showed that after a sufficiently long time, there was a high probability for the studied stations in Peninsular Malaysia encountered the slightly warm temperature, with the range of maximum temperature from $30.1^{\circ} \mathrm{C}$ to $34.0^{\circ} \mathrm{C}$. The objective of this study to determine the steady-state probability for the daily maximum temperature in Peninsular Malaysia was successfully achieved. By determining the steadystate probability for the daily maximum temperature in Peninsular Malaysia, the state of transition for each of the studied stations can be determined. The importance of knowing the steady-state probability the range of maximum temperature for each studied stations whether it was slightly cool, neutral, slightly warm, warm, and hot temperature would help the citizens with the awareness and effects of climate warming.

In conclusion, after a sufficiently long time, there was a high probability for the studied stations in Peninsular Malaysia encountered the slightly warm temperature, with the range of maximum temperature from $30.1^{\circ} \mathrm{C}$ to $34.0^{\circ} \mathrm{C}$, except Chuping and Alor Setar tended to be hotter with the range of maximum temperature from $38.1^{\circ} \mathrm{C}$ to $42.0^{\circ} \mathrm{C}$ and Muadzam Shah tended to be in warm state with the range of maximum temperature from $34.1^{\circ} \mathrm{C}$ to $38.0^{\circ} \mathrm{C}$.

5. ACKNOWLEDGEMENT

We are grateful for the Malaysian Meteorological Department and School of Mathematical Sciences, Universiti Sains Malaysia.

REFERENCES

Adam, R. Y. (2016). Stochastic Model for Rainfall Occurrence using Markov Model in Sudan. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 17(1): 272 - 286.

Barkotulla, M. A. B. \& Rahman, M. S. (2012). Multi-State Markov Chain Modelling System for Environmental Impact of Climate Change. International Journal of Statistical Sciences. 12: 29 - 46.

Bernama (2016, March 19). Ministry Urged to Close Schools in Alor Setar, Chuping Tomorrow Due to Hot Weather. Bernama. Retrieved from http://www.bernama.com/bernama/v8/sp/newssports.php?id=1226634

Curriero, F. C., Heiner, K. S., Samet, J. M., Zeger, S. L., Strug, L. \& Patz, J. A. (2002). Temperature and Mortality in 11 Cities of the Eeastern United States. Am J Epidemiol. 155: 80-87.

Dai, S., Shulski, M. D., Hubbard, K. G. \& Takle, E. S. (2016). A Spatiotemporal Analysis of Midwest US Temperature and Precipitation Trends during the Growing Season from

[^7]1980 to 2013 and Precipitation Trends during the Growing Season from 1980. International Journal of Climatology. 36: 517-525.

Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G. K., Allen, S. K., Tignor, M. \& Midgley, P. M. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. World Meteorological Organization: Geneva, Switzerland.

Gan, T. Y., Mari Ito, Huelsmann, S., Qin, X., Lu, X., Liong, S. Y., Rutschman, P., Disse, M. \& Koivosalo, H. (2015). Possible Climate Change/Variability and Human Impacts, Vulnerability of African Drought Prone Regions, its Water Resources and Capacity Building, Hydrological Sciences Journal. doi:10.1080/02626667.2015.1057143

Gayo, W. S. \& Tolosa, H. L. (2015). Analysis of the Daily Mean Temperature in the National Capital Region, Philippines Using Markov Chain. American Research Thoughts. 1(8): 1748-1756.

Hajat, S., Kovats, R. S., Atkinson, R. W. \& Haines, A. (2002). Impact of Hot Temperatures on Death in London: A Time Series Approach. J Epidemiol Community Health. 56: 367 - 372 .

Hasan, H., Che Nordin, M. A. \& Mohd Salleh, N. H. (2015). Modelling Daily Maximum Temperature for Thermal Comfort in Northern Malaysia. AENSI Journals Advances in Environmental Biology. 9(26): 12-18.

Keellings, D. \& Waylen, P. (2011). The Stochastic Properties of High Daily Maximum Temperatures Applying Crossing Theory to Modelling High-Temperature Event Variables. Theor Appl Climatol. Springer-Verlag. doi: 10.1007/s00704-011-0553-2.

Kunst, A. E., Looman, C. W. N. \& Mackenbach, J. P. (1993). Outdoor Air Temperature and Mortality in the Netherlands: A Time-series Analysis. Am J Epidemiol. 137: 331-341.

Lin, T. P. \& Matzarakis, A. (2008). Tourism Climate and Thermal Comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52(4): 281-290.

Lumioan, L. (2011, October 10). Philippines Ranks Third on Climate Change Vulnerability Test. Philippine Daily Inquirer.

McClave, J.T., Benson, P.G. \& Sincich, T.T. (2014). Statistics for Business and Economics. New Jersey: Pearson.

National Weather Service. (2016). Glossary. Retrieved June 24, 2016, from http://www.weather.gov/glossary/index.php?letter=h.

Nott, D. J., Dunsmuir, W. T. M., Kohn, R. \& Woodcock, F. (2001). Statistical Correction of a Deterministic Numerical Weather Prediction Model, Journal of the American Statistical Association. 96(455): 794 - 804.

[^8]Tan J. G., Zheng, Y., Kalkstein, L. S., Song, G., Kalkstein, A. J. \& Tang, X. (2007). Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol. 51: 193 200.

Wikipedia. (2016). Glossary. Retrieved June 24, 2016, from https://en.wikipedia.org/wiki/Temperature

[^9]
[^0]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^1]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^2]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^3]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^4]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^5]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^6]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^7]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^8]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

[^9]: p-ISSN 1675-7939; e-ISSN 2289-4934
 © 2017 Universiti Teknologi MARA Cawangan Pulau Pinang

